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Abstract

Sedimentary records provide an invaluable background for understanding of complex phenomena that vary within multiple

spatio–temporal scales, such as climate and the seismic cycle. Understanding the latter in southern Chile has yielded motivation

to develop new tools to deal with such records, in order to build a comprehensive peleoseismic catalog from them. The region

inherited an extensive chain of lakes from the pleistocene glaciations, and a strong tephrochronological framework has been

developed during the last two decades. Lake deposits have been extensively studied and shown to contain an incredibly sensitive

paleoseismic record in the form of lacustrine turbidites. The task is thus to build the best possible chronology making use of all

available data. Age–depth modeling is now routinely done by means of bayesian techniques, by using a sedimentation model

as prior information and a set of age determinations as data. This approach provides the best results for any single record, but

not necessarily for a set of records taken together. This is the goal of the shared chronologies approach, to build the tools for

estimating the best chronologies for a set of sedimentary records given some chronological data for each and a set of shared

events or stratigraphic markers. We use for this purpose the fact that two or more of such layers should yield age differences

close to zero, within the general age uncertainty. This fact is incorporated to the model as prior information, along with the

sedimentation model. The idea is clearly usable in a wide range of contexts, and for this reason we would like to share the

implementation in a very early stage of development in order to incorporate feedback into design decisions that could affect

extensibility and modularity, and to forge collaboration. This contribution shares an early experiment against a simulated data

set, as well as the current R implementation and future plans.
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Abstract

Sedimentary records provide an invaluable background for understanding of complex phenomena that vary
within multiple spatio–temporal scales, such as climate and the seismic cycle. Understanding the la�er in
southern Chile has yielded motivation to develop new tools to deal with such records, in order to build a
comprehensive peleoseismic catalog from them. The region inherited an extensive chain of lakes from the
pleistocene glaciations, and a strong tephrochronological framework has been developed during the last
two decades. Lake deposits have been extensively studied and shown to contain an incredibly sensitive pa-
leoseismic record in the form of lacustrine turbidites. The task is thus to build the best possible chronology
making use of all available data.
Age–depth modeling is now routinely done by means of bayesian techniques, by using a sedimentation
model as prior information and a set of age determinations as data. This approach provides the best results
for any single record, but not necessarily for a set of records taken together. This is the goal of the shared
chronologies approach, to build the tools for estimating the best chronologies for a set of sedimentary
records given some chronological data for each and a set of shared events or stratigraphic markers. We use
for this purpose the fact that two or more of such layers should yield age di�erences close to zero, within
the general age uncertainty. This fact is incorporated to the model as prior information, along with the
sedimentation model.

Improving precision
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Fig. 1: Age distributions for a 14C–dated layer within a set of related records (see below) as derived from: (•) the calibrated 14C sample; and (•) the
modeled shared chronologies for the whole set. The modeled age takes into account other dates in the same sedimentary sequence and their

stratigraphic relations, thus it will only sample sets of ages in which the overlying ones are younger. By using the stratigraphic markers ammong
sequences, all ages within the set of records are considered. This renders the best estimate considering all available data.

Outlook

These preliminary results demonstrate that the proposed procedure is practicable (the ~ 100.000 iterations
presented here took less than 2 minutes to run in my laptop), yet the sampler’s working is suboptimal and
therefor it is not covering the whole parameter space. Prospectively, we intend to design the means to in-
tegrate with existing so�ware for MCMC sampling, gaining the ability to choose from di�erent strategies
in a case-by-case basis. Specifically, we intend to develop a set of functions for model description within
R, which can be passed to R–based MCMC algorithms but also to external so�ware such as JAGS. Fur-
ther extension will aim to include other kind of geological sequences and dating methods, such as raised
beaches or coastal marsh tsunami deposits, and used to integrate such diverse records into a coherent
shared chronology.

Modeling sets
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Fig. 2: Shared chronologies for three sintetic sediment cores. Lines are a sample of 100 possible age–depth trajectories from the posterior distribution. (•) bars represent higher (posterior) density intervals for 14C
dates. (•) dashed lines mark event layers shared ammong records. This sintetic data set was produced by simulating 3000 years of sediment accumulation for the three records. Four events produced

instantaneous deposits within each record. 14C ages were simulated from the SHcal13 calibartion curve [3] for the known time of deposition, and these dates where then treated as laboratory estimates.
Posterior estimates are based on ~ 25000 samples drawn by Markov Chain Monte Carlo (MCMC) sampling. All the code is wri�en in plain R [4], which leaves much space for optimization by porting the core

routines to a low level language, suggesting it would be practicable to approach larger data sets.

Shared events
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Fig. 3: Modeled age distributions for common event layers. (•) dashed lines mark the true age for each event. The fact that they generally fall outside the highest probability region is related to the poor density
of dating data. Nevertheless, the close resemblance of modeled ages ammong records demonstrates that the knowledge about these layers being derived from a single event across sedimentary records has

been successfully incorporated. This also means that dates from one record are being used to inform the chronology of every other record within the set.

A first approximation

We use a bare–bones version of the rbaconmodel[1], based solely on a regular increment in depth associated
to a random accumulation rate, from which we can derive an age. The formulation is as follows:
Let j = 1, 2, . . . ,m be a core index within a set ofm cores, and let i = 1, 2, . . . , nj be a depth index denoting
the depths for which we will compute an age for core j. Depths dij will be equaly spaced and conditioned
by a desired resolution c (in cm) such that ∆d = c is a constant for all cores. This is excluding any event
layer. We model a set of ages xij as a function of depth and an accumulation rate θij ∼ Gamma(aj, bj) (in
years cm−1), as:

xij = x0j +

i∑
i=1

θijc

Where x0j is the jth core’s extraction year. If we denote the probability of each particular accumulation
rate within a random realization of the model as p(θij|aj, bj), then the prior probability for the given set of
sedimentation histories will be:

p(θ) ∝
m∏
j=1

nj∏
i=1

p(θij|aj, bj)

Let δk, k = 1, 2, ..., l be a set of age di�erences between age estimates xij for known event layers ammong
the m cores. We can represent our prior knowledge by stating that δ ∼ N(µδ, σδ), where µδ = 0 and σδ
resembles the uncertainty related to the dating method. For this run we used µδ = 0 and σδ = 1. If we
denote the probability of any particular δk as p(δk|µδ, σδ), then the prior for any iteration will be:

p(δ) ∝
l∏
k=1

p(δk|µδ, σδ)

The overall prior, considering our knowledge of sedimentation rates and shared event layers, would be
given by:

p(θ, δ) ∝ p(θ)p(δ)

For 14C calibration of independent samples, we follow Bronk Ramsey [2] and borrow the following method
from OxCal: let yrj ∼ N(µy, σy) be the rth 14C determination from core j, where r = 1, . . . , sj is an age
index, and each age is associated with a depth drj. Let ψ be the calibration curve, a function of age t
providing an estimate for the 14C age such that f(t) ∼ N(µψ, σψ). The probability for any year t can be
calculated by:

p(t|y,ψ) ∝
exp (−(µy − µψ)

2/2(σ2y + σ
2
ψ))√

σ2y + σ
2
ψ

If we denote the likelihood of any age estimate related to depths within drj as p(xrj|yrj, ψ), the likelihood
for any given set of chronologies will be given by:

p(x|y, ψ) ∝
m∏
j=1

sj∏
r=1

p(xrj|yrj, ψ)

The posterior probability can be estimated from the product of the overall prior p(θ, δ) and the likelihood
p(x|y, ψ), as:

p(θ, δ|y, ψ) ∝ p(θ, δ)p(x|y, ψ)

Posterior densities are estimated by sampling with a Metropolis–Hastings random walk algorithm, with
steps coming from a jump distribution J ∼ N(µ = 0, σ = 0.8)
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