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Abstract

Machine learning algorithms have become a powerful tool in different areas of seismology, such as phase picking/earthquake
detection, earthquake early warning and focal mechanism determination. Previously convolutional neural networks (CNN)
have been applied to continuous seismic waveform recordings to perform efficient phase picking and event detection with good
accuracy [Zhu et al., 2018]. However, the off-line training of current CNN requires at least a few thousands of accurately picked
seismic phases, which makes it difficult to be applied to regions without sufficient picked phases. In this work, we will validate
the transfer learning among different geographic regions. Our tests show that the phase picker trained on manually-labeled
data acquired from Sichuan, China following the 2008 M7.9 Wenchuan earthquake [Zhu et al., 2018] works equally well on the
continuous waveform acquired from Oklahoma, US [Zhu et al., 2018]. Specifically, using the CNN trained on the Wenchuan
dataset, together with 895 local/regional catalog events recorded in central Oklahoma, we refine part of the networks to pick
the arrival times of the local seismicity in Oklahoma. The refined CNN results are compatible with the matched filter results
using the same catalog events as templates. Our next step is to extend our test to waveforms from different tectonic regions
to demonstrate the generality of CNN-based phase picker. We plan to further use a New Zealand seismic dataset that includes
more than 20 GeoNet stations in the North Island, where the matched-filter detected results are available to be compared with
(Yao et al., 2018). Alternatively dataset include a subset of events in the waveform relocated catalog in Southern California.
Updated results will be presented at the meeting.
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