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Abstract

We develop a Hamiltonian Monte Carlo (HMC) sampler which solves a multi-parameter elastic full-waveform inversion (FWI) in
a probabilistic setting for the first time. This gives novel access to the full posterior distribution for this type of highly non-linear
inverse problem. Typically, FWI has focused on using gradient descent methods with proper regularization to iteratively update
models to a minimum misfit value. Non-uniqueness and uncertainties are mostly in this approach. Bayesian inversions offer an
alternative by assigning a probability to each model in model space given some data and prior constraints. The drawback is
the need to evaluate a very large number of models. Random walks from Markov chains counter this effect by only exploring
regions of model space where probability is significant. HMC method additionally incorporates gradient information, i.e. local
structure, typically available for numerical waveform tomography experiments. So far, HMC has only been implented for
acoustic FWI. We implement HMC for multiple 2D elastic FWI set-ups. Using parallelized wave propagation code, wavefields
and kernels are computed on an regular numerical grid and projected onto basis functions. These gradients are subsequently
used to explore the posterior space of different target models using HMC. The free parameters in these experiments are P and S
velocity, and density. Although simulating Hamiltonian dynamics in the resulting phase space is approximated numerically, the
results of the Markov chain are nevertheless very insightful. No prior tuning of kernels, data or model space is required, under
the constraint that the sampler is properly tuned. After a burn in phase during which the mass matrix is iteratively optimized,
the Markov chain is run on multiple nodes. After approximately 100,000 samples (combined from all nodes) the Markov chain
mixes well. The resulting samples give access to the full posterior distribution, including the mean and maximum-likelihood

models, conditional probabilities, inter-parameter correlations and marginal distributions.
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Traditional Full-Waveform Inversion (FWI) is a deterministic procedure We perform 3 separate chequerboard tests; twice with the same pattern but differing perturbation magnitudes, and once with a finer grained pattern. This way, we are able to
that operates by iteratively minimising an objective functional to invert for characterise both non-linearity and dimensional scaling of the method. All three inversions solve for three parameter sets: P-wave velocity (V,), S-wave velocity (V) and den-
e.g. material parameters. Bayesian inference offers full non-linear charac- sity. The chosen misfit is L2 distance between the seismograms. The set-up remains the same throughout al three inversions; 2 sources and 6 receivers placed around the cheqg-
terisation at the expense of requiring many samples (computations). Typi- uerboard. The set-up can be seen in Figures 3 and 4.
cal sampling algorithms only update few parameters or are characterised
by slow model space exploration, at least for sufficiently high dimensions. The forward and adjoint simulations are both finite-difference simulations using 4 point staggered grid stencils after Virieux (1986). The kernels computed are not smoothed but
projected onto basis functions spanning 5x5 or 10x10 finite-difference grid points (square basis functions).
Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (McMC) = — Tuning of th ler is d . velv duri I hain. Duri his chain. first V_ i
sampling method which for the first time allows us efficiently generate — Density g of the sampler Is cone iteratively during an exp pratory chain. During this chain, first V is
enough samples on such a high-dimensional expensive forward problem. 2s00] — P properly tun.ed, then dens[ty, then V. The reason for th_ls is that if one tries tq 'Eune the least sensitive
It does so by incorporating misfit (or posterior) gradient information in . 10-24 parameter first, the effect |s.drowned out by the burn-in effect of more sensitive par'ameters. Whelj
the sampling algorithm; paving the way for powerful non-linear Bayesian 3 2000, -~ parameters seem to be stationary over a few thousand samp!es, the mass rr.1a.tr|x is upqatgd, until
inference. The algorithm has been thoroughly described in the literature ,émor | £, \ nc;\large chapge in parameters or misfit is observed after cha!‘\gmg masses. Thls is shown in Flgure_2,
(e.g. Neal 20T1), although its application in geophysical inverse studies is g N : N where the dlf'ferent.parame.ter sets reach stable valugs a.t different points in the explo'ratory chain.
still limited, but spreading (Fichtner & Simuté, 2018; Sen & Biswas, 2017). 1000 e - M One parameter. set‘(l.e. der?5|ty) has pnly one mass, which is chosen on purpose to save time. The end
g result of all tuning is used in the main chains (next paragraph).
'(I'el':;sst?:)u :\);le;to: sise: r;i‘/ts‘:\'\:ilg gvrvrc\)lzll(tsipflzrsjc?h ?r{\?:?seet;; o'Z:I:Irtr:sp: srlanrgﬁtr:r O 00 00 b 22000 30000 0 5000 10000 15000 20000 25000 30000 The. samples used for the solution of the inverse problem are geqerated by multiple chain;. These
ited cluster computations. Three different inverse problems (with differing + Figure 2: Trace plot and misfit plot of one HMC exploratory chain. Every fc::ralns are started at samples randpmly chosen frpm the last sgctlon of the exploratory chain. Each
: " ; : " N | get uses between 10 and 40 chains (coarse vs. fine). The chains of 200K-600K accepted samples
number of model parameters) are investigated ilustrating the benefits of green line indicates tuning parameter update. (@ A Iv 65% bined and thi d to 1% d ) -
high-dimensional posterior information. pproximately % acceptance) are combined and thinned to 1% to speed up post-processing.
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FWI is an inversion method that inverts for medium parameters by model- % _;Z} 8 g Bk ° ,ZZ % 122“ %0 03
ling complete wavefields. Its target functional is defined by the fit be- 100 L, 0 100 o oo . e . R 1.0
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wave equation is used to compute the parameter gradient or kernels. In 0 S0 75 100 12 N IR S ¢ B N 0B 0B 0 25 50 75100 125
deterministic inversions these gradients are used for gradient-descent " — - . " — - ; -
s e + Figure 3: Statistical moments of the posterior of density of a coarse target. The cheq-  * Figure 4: Statistical moments of the posterior of V, of a fine target from a chain start-
style optimisations.
uverboard taraet are nerturbations of 25% which are well resolved to within a few per- ad at the triie modal Euan aftar ctartina at tha nnrrnn+ model the inverse nroblem does
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cent. Standard deviations differ per medium parameter. Skewness (third statistical not resolve the parameter well. Standard deviations and skewnesses are high and vary-

HMC is an McMC sampling method where the proposals are generated by . : . . " S oo 3
moment) is non-zero for many parameters, but strongest in parameters furthest from ing with position. Red x symbols indicate sources, green v symbols indicate receivers.

simulating Hamiltonian dynamics (the equations of motion) on a poten-

tial surface (like planets under the influence of gravity) for some arbitrary the experimental array. Experimental set-up influence posterior structure strongly. 4 Figure 5: Marginals for 4 arbitrary parameters of the fine grained target. Correlations
time. This surface is given by the misfit function of the inverse problem, as Red x symbols indicate sources, green v symbols indicate receivers. and linearity differ for all parameters. Red lines indicate true model.
illustrated in Figure 1. This way, the gradient of the target determines par- The statistical moments shown in Figure 3 and 4 emphasize three important findings of this study:
tially the direction of the new sample, guiding the sampler to interesting 1. HMC is able to sample FWI posteriors adequately even without a specific starting model and with
models. This is especially beneficial for highly correlated parameters. strong perturbations (where deterministic methods would struggle with non-linearity), and; 0 7007 — 1 "
2. Bayesian inference of FWI problems is able to invert for density accurately, and,; 1800 ‘ &5
The two tuning parameters for the HMC algorithm are the simulation time 3. The posteriors for these FWI problems contain information normally not retrieved by deterministic | o | - ]
and the particle mass matrix M. The particle mass is similar to the mass of FWI combined with Gaussian assumptions. Higher order posterior moments are non-zero. " | " N
an object moving in a potential field, but every dimension can have a dif- £ 1 ;g ™
ferent mass, as long as the mass matrix M is positive definite and symmet- All three different parameter sets show different resolvabilities. Parameter uncertainty also differs |5* { ‘ I B L ‘“" os g
ric. By changing the mass matrix of the algorithm, model space is prefer- within the model. S-wave speed is best resolved, with strongest correlations between parameters, | 2. ' { E
entially explored in different directions. This is illustrated in Figure 1. across all three targets. This is inherent to L2 misfits, as S-wave amplitudes are largest. The evaluation | \ v a0 -
of the high dimensional chequerboard FWI problem was hindered by the limitations of FWI (subwave- ‘ o5
Combining HMC and FWI is very natural, as the FWI kernels themselves length structure). This was confirmed by re-starting an McMC chain at the true model, as shown in | = |
function as the derivatives needed in HMC! A Figure 4. Bayesian inference gives us access to complex information of our inverse problems, such as SO0 S0 3000 G s o 4 " Mo T 0 7w e w0 e %o o
€ Figure 1: One HMC trajecto- marginals (shown in Figure 5) and conditionals (ask the presenter for a demo!).
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