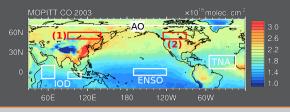
Chemistry-Climate Links for Carbon Monoxide in Northern Hemisphere Boreal Fire Regions and an Assessment of Global Fire Inventories

Rebecca Buchholz¹, Helen Worden¹, Dorit Hammerling¹, Benjamin Gaubert¹, Louisa Emmons¹, and Christine Wiedinmyer²

¹National Center for Atmospheric Research ²Cooperative Institute for Research in Environmental Sciences, University of Colorado

November 23, 2022

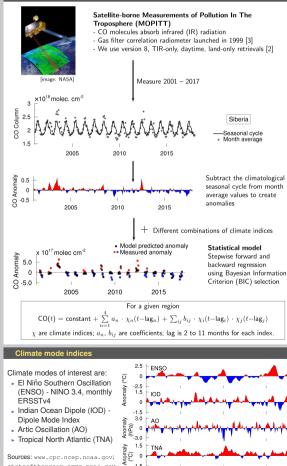
Abstract


Fire emissions are a major contributor to atmospheric composition, affecting atmospheric oxidizing capacity and air quality. Transported amounts from Northern Hemisphere boreal fires can reach the pristine Arctic atmosphere as well as impact air quality in populated regions. Carbon monoxide (CO) is a useful trace gas emitted from fires that can be used to link extreme fire events with climate variability. We use our recently developed statistical tool to investigate the climate drivers of satellite measured CO variability in two Northern Hemisphere boreal fire regions: northwest Canada and Siberia. Our focus is on quantifying the ability of climate mode indices for the Pacific, Atlantic, Indian and Arctic Oceans in predicting CO amounts in these regions. Climate mode indices El Niño Southern Oscillation (ENSO), Tropical North Atlantic (TNA), the Dipole Mode Index (DMI) and the Arctic Oscillation (AO) are used to develop statistical models of column CO interannual variability from the Measurements of Pollution In The Troposphere (MOPITT) satellite instrument, for the time period covering 2001-2017. In addition, we assess the ability of fire emission inventories to reproduce CO, including the Fire Inventory from NCAR (FINN), the NASA Quick Fire Emissions Dataset (QFED) and the Copernicus Atmosphere Monitoring Service (CAMS) Global Fire Assimilation System (GFAS). These are implemented in the NCAR Community Atmosphere Model with chemistry (CAM-chem) and subsequently evaluated against MOPITT CO observations. Emission uncertainty contribution to inter-inventory differences are quantified, and the modeled contribution of fires to CO interannual variability is determined.

Chemistry-Climate Links for Carbon Monoxide in Northern Hemisphere Boreal Fire Regions and an Assessment of Global Fire Inventories

Statistical models with best predictive power

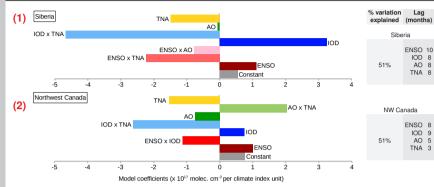
R. R. Buchholz¹, H. M. Worden¹, B. Gaubert¹, L. K. Emmons¹, D. Hammerling², C. Wiedinmyer³


¹Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA ²Computational Information Systems Laboratory, National Center for Atmospheric Research, Boulder, CO, USA ³2 Cooperative Institute for Research in Environmental Sciences. The University of Colorado, Boulder, CO, USA

Introduction

Fire emissions are a major contributor to atmospheric composition, affecting the atmospheric oxidizing capacity and air quality. Transported amounts from Northern Hemisphere boreal fires can reach the pristine Arctic atmosphere as well as impact air quality in populated regions. Carbon monoxide (CO) is a useful trace gas emitted from fires that can be used to link extreme fire events with climate variability. The magnitude of fire emissions, such as CO, is connected to climate through both the availability and dryness of fuel. We use our recently developed statistical tool [1, 6] to investigate the climate drivers of satellite measured CO variability in two Northern Hemisphere boreal fire regions: Siberia (1) and Northwest Canada (2).

Methodology: Interannual variability analysis

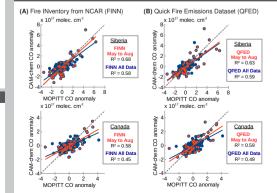

-1.5

2005

2010

2015

stateoftheocean.osmc.noaa.gov


Larger coefficients suggest that IOD impact is stronger in Siberia than Canada. Siberian emissions are transported to Canada, and the variability pattern is consequently transported as well.

Chemistry-climate simulations

CAM6-chem within the Community Earth-System Model (CESM 2) framework [4]

Resolution	1.25° longitude x 0.95° latitude, 56 levels (~40 km model top)
Years Run	2002-2015, both with ~1 year spin-up
Meteorology	Nudged to NASA MERRA2 reanalysis at ~10% relaxation
Fire Emissions	(A) FINN version 1.5
	(B) QFED CO ₂ ×FINN emission factors
Other Emissions	Anthropogenic and Ocean: CMIP6, Biogenic: online MEGAN
Chemistry	170 species, with over 400 reactions
Tagging	Source and sectors based on HTAP Tier 1 regions
	(http://www.htap.org/).

CAM-chem CO anomalies versus MOPITT CO anomalies

Modeled match measured CO anomalies better in Siberia than Canada. FINN produced slightly better correlations than QFED in Siberia for May to August, suggesting better representation of local fire emission variability.

These Northern Hemisphere regions show longer lags between climate modes and CO variability than was found in the Southern Hemisphere [1]. This is supported by longer ENSO lags to fire emissions at high northern latitudes from Monks et al, 2012 [5]

48%

39%

-1%

-1%

1%

35%

5%

(2002 - 2015)

45%

17%

8%

3%

8%

32%

12%

Siberia NW Canada

Modeled interannual variability in CO

Major contributions to simulated CO anomalies

(A) - CAM-chem with FINN v1.5

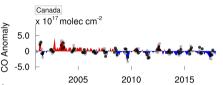
Source Type

Asia

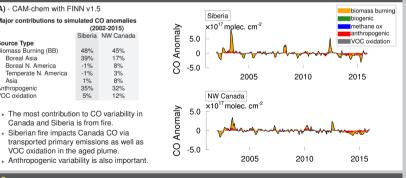
Anthropogenic

VOC oxidation

Summary


Biomass Burning (BB)

Boreal N. America


Temperate N. America

Boreal Asia

Siberia Model predicted anomaly Measured anomaly x 10¹⁷ molec cm⁻ Anomaly 5.0 0 8 -5.0 2005 2010 2015

All climate modes are required to explain CO variability and first-order interaction terms are needed for both regions

Acknowledgements

VOC oxidation in the aged plume. Anthropogenic variability is also important.

Canada and Siberia is from fire.

Siberian fire impacts Canada CO via

- Climate modes are useful for describing atmospheric CO variability.
- CAM-chem modeling helps explain the source contributions, and highlights the importance of fire for these regions.
- The missing variability in the empirical model could be due to Anthropogenic sources, supported by CAM-chem results.
- Fire inventories perform differently depending on region.
- Future work: Include an anthropogenic index; Include Madden-Julian Oscillation climate mode; De-trend dataset prior to anomaly analysis; Add Global Fire Assimilation System (GFAS) to inventory analysis.

References

- Buchholz, R. R. et al., (2018), J Geophys Res-Atmos, 123, 9786-9800
- [2] Deeter M N et al. (2019) TRD (in prep) [3] Drummond, J. R. et al., (1996), J. Atmos. Oceanic Technol, 2, 314-320
- [4] Lamarque, J.-F. et al. (2012), Geosci. Model Dev. 5, 369-411
- [5] Monks, S. A. et al. (2012), Geophys. Res. Lett. 9, L14804
- [6] Simonson, P. (2018), www.mathworks.com/matlabcentral/fileexchange, 68319-southern-hemisphere-carbon-monoxide-modeling

buchholz@ucar.e