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Abstract

A careful characterization of moisture fluxes and saturation-ratio statistics in atmospheric convection is significant for cloud

microphysical processes and dynamics. The saturation-ratio of water vapor is defined as the ratio of actual water vapor pressure

and its equilibrium value at a given air temperature. Therefore, it is a function of two scalars (water vapor and temperature)

and is coupled through the nonlinear Clausius-Clapeyron equation. Participation of both scalar fields in the convection process

and the nonlinear coupling of both scalars in saturation-ratio make this problem more complex, as compared to its dry-

convection counterpart. We have explored heat and water vapor fluxes and saturation-ratio statistic in the moist Rayleigh-

Bénard convection case, using the one-dimensional-turbulence (ODT) model developed by Wunsch et al. JFM 2005. This

idealized small-scale simulation is a step toward understanding the full atmospheric convection problem at a more fundamental

level. We have obtained the thermal and moisture fluxes as a function of the non-dimensional buoyancy parameter, also known

as moist Rayleigh number, and compared it with the scaling relations. Moreover, we have examined the mean and variance

profiles of saturation-ratio, and analyzed the different contributing terms for saturation-ratio fluctuations. Based on the scaling

analysis, a simplified relation between saturation-ratio variance and moist Rayleigh number has been derived and compared

with the simulation results. Additionally, we found that different values of water vapor and thermal diffusivities make the

saturation-ratio pdf broader than the case when they are considered equal.
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Introduction

A careful characterization of moisture fluxes and supersatura-
tion statistics in atmospheric convection is significant for cloud
microphysical processes and dynamics. The small-scale super-
saturation fluctuation could be an important mechanism for
droplet size-distribution broadening [1]. In an idealized sense,
atmospheric boundary-layer convection is equivalent to Rayleigh-
Bénard convection [2, 3]. Here, continuous plume eruption from
boundaries transports heat and moisture and produces the mixed
layer [4]. The presence of multiple driving scalars (water vapor
and temperature), with slightly different diffusivities, adds to the
degree of complexity. Additionally, in the supersaturation statis-
tics, a nonlinear coupling between water-vapor and temperature
fields makes the problem intriguing. Important parameters for
this problem are [5]:

Ramoist ≈ g∆TH3

T0νDt
+ gϵ∆qvH

3

νDt
, P r ≡ ν

Dt
, and Sc ≡ ν

Dv
.

Numerical Approach

We approach this problem using an idealized, one-dimensional-
turbulence (ODT) model that faithfully represents the processes
of advection and diffusion in turbulent convection, including
fully-resolved boundary layers [6]. The range of Rayleigh number
2.05 × 108 ≤ Ramoist ≤ 2.75 × 109 covered in simulations is rele-
vant to the Π-chamber. In order to understand the relative roles
of the two diffusivities, we use the following four combinations.

• Actual Dv and Dt: actual diffusivities for the water vapor
and thermal fields at 283 K (Dv/Dt = 1.16).

• Dv = Dt: Dv = the actual thermal diffusivity (Dv/Dt = 1).
• 4 × Dv: Dv = four times the actual value, and Dt = same as

the actual value (Dv/Dt = 4.63).
• 4 × Dt: Dv = same as the actual value, and Dt = four times

the actual value (Dv/Dt = 0.29).
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Figure 1: Variation of the scalar fluxes of water vapor (Sh) with moist Rayleigh
number (Ramoist). Fitting of the scaled Sh data produce Ramoist exponents
around 0.328 ± 0.006.

Supersaturation Fluctuations
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Figure 2: Sample PDFs of supersaturation near the domain center for the different diffusivity cases (8 K applied temperature difference).

Scaling Analysis

Moisture flux:
Sh ∝ Sc1/2Ra

1/3
moist |Pr ∼ 1 Sh ∝ Sc1/2Pr−1/3Ra

1/3
moist |Pr ≪ 1

Sh : Sherwood Number; Pr : Prandtl Number; Sc : Schmidt Number
Supersaturation Fluctuations:

σ2
s ≈ S2

(σev

ēv

)2

+ ζ2
(

σT

T̄

)2
− 2ζ

T ′e′
v

T̄ ēv


(

σs

S

)2
∼ ξ2

1 − 1
S

(
Pr

Sc

)1/2
2

Pr−2(1 +
√

Pr)−1 Ra
5/3
moist

(
z

H

)−1

σT : temperature STD; σqv : water-vapor STD; z: vertical position; H : domain height; ξ ∝ H−3

∆T : applied temperature difference; ∆qv: applied water vapor mixing-ratio difference
ν: kinematic viscosity; Dt: thermal diffusivity; Dv: water vapor diffusivity

Supersaturation Fluctuations in Bulk: Contributions from Both Scalars
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Figure 3: STDs of normalized water vapor mixing-ratio (left) and supersaturation fluctuation (right) at the domain center versus Ramoist, and their comparison
with scaling relations (dash-line) Ra

−1/6
moist and Ra

5/6
moist.

Mixing Diagram

Figure 4: Mixing diagram for different diffusivity cases at 20K applied temper-
ature difference.

Conclusion

• Scaling relations for heat and moisture fluxes are obtained as
a function of Ramoist, Pr, and Sc.

• In the bulk fluid, σ∗
T and σ∗

qv both follow a Ra
−1/6
moist scaling

relation. Moreover, the magnitude of scalar fluctuations
increases with an increase in the respective scalar diffusivity.

• PDFs of supersaturation become broader with an increase in
absolute value of diffusivity difference. Also, PDFs are slightly
negatively skewed for cases with low diffusivity difference,
unlike the T and qv PDFs.

• Both, scaling and numerical output suggests:
σ2

s ∝ Ra
5/3
moist/H6.

• The analysis of numerical output shows similar order
contributions to the supersaturation variance from both
scalar variance and covariance.

• Distribution of points in a pressure-temperature mixing
diagram deviate from the classical mixing line for isobaric
mixing, when Dv ̸= Dt.
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