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Abstract

A careful characterization of moisture fluxes and saturation-ratio statistics in atmospheric convection is significant for cloud
microphysical processes and dynamics. The saturation-ratio of water vapor is defined as the ratio of actual water vapor pressure
and its equilibrium value at a given air temperature. Therefore, it is a function of two scalars (water vapor and temperature)
and is coupled through the nonlinear Clausius-Clapeyron equation. Participation of both scalar fields in the convection process
and the nonlinear coupling of both scalars in saturation-ratio make this problem more complex, as compared to its dry-
convection counterpart. We have explored heat and water vapor fluxes and saturation-ratio statistic in the moist Rayleigh-
Bénard convection case, using the one-dimensional-turbulence (ODT) model developed by Wunsch et al. JFM 2005. This
idealized small-scale simulation is a step toward understanding the full atmospheric convection problem at a more fundamental
level. We have obtained the thermal and moisture fluxes as a function of the non-dimensional buoyancy parameter, also known
as moist Rayleigh number, and compared it with the scaling relations. Moreover, we have examined the mean and variance
profiles of saturation-ratio, and analyzed the different contributing terms for saturation-ratio fluctuations. Based on the scaling
analysis, a simplified relation between saturation-ratio variance and moist Rayleigh number has been derived and compared
with the simulation results. Additionally, we found that different values of water vapor and thermal diffusivities make the

saturation-ratio pdf broader than the case when they are considered equal.
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Introduction

A careful characterization of moisture fluxes and supersatura-
tion statistics in atmospheric convection is significant for cloud
microphysical processes and dynamics. The small-scale super-
saturation fluctuation could be an important mechanism for
droplet size-distribution broadening [1]. In an idealized sense,
atmospheric boundary-layer convection is equivalent to Rayleigh-
Bénard convection |2, 3|. Here, continuous plume eruption from
boundaries transports heat and moisture and produces the mixed
layer |4]. The presence of multiple driving scalars (water vapor
and temperature), with slightly different diffusivities, adds to the
degree of complexity. Additionally, in the supersaturation statis-
tics, a nonlinear coupling between water-vapor and temperature
fields makes the problem intriguing. Important parameters for
this problem are [5|:
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Numerical Approach

We approach this problem using an idealized, one-dimensional-
turbulence (ODT) model that faithfully represents the processes
of advection and diffusion in turbulent convection, including
fully-resolved boundary layers |6]. The range of Rayleigh number
2.05 X 10° < Rt < 2.75 % 10” covered in simulations is rele-
vant to the Il-chamber. In order to understand the relative roles
of the two diffusivities, we use the following four combinations.

« Actual D, and D;: actual diffusivities for the water vapor
and thermal fields at 283 K (D, /D; = 1.16).

« D, = Dy D, = the actual thermal diffusivity (D,/D; = 1).

« 4 x D,: D, = four times the actual value, and D; = same as
the actual value (D, /D; = 4.63).

« 4 x Dy D, = same as the actual value, and D; = four times
the actual value (D, /D; = 0.29).
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Figure 1: Variation of the scalar fluxes of water vapor (Sh) with moist Rayleigh
number (Ra,,0ist). Fitting of the scaled Sh data produce Ra,, st €xponents
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Figure 2: Sample PDFs of supersaturation near the domain center for the different diffusivity cases (8 K applied temperature difference).
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Sh : Sherwood Number; Pr : Prandtl Number; Sc : Schmidt Number
Supersaturation Fluctuations:
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or: temperature STD; o, : water-vapor 5STD; z: vertical position; H : domain height; § oc H =3
AT applied temperature difference; Aq,: applied water vapor mixing-ratio difference

v: kinematic viscosity; Dy: thermal diftusivity; D,: water vapor diffusivity

Supersaturation Fluctuations in Bulk: Contributions from Both Scalars
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Figure 4. Mixing diagram for different diffusivity cases at 20K applied temper-

ature difference.

Conclusion

= Scaling relations for heat and moisture fluxes are obtained as
a function of Ra,,.ist, Pr, and Sc.

015t
relation. Moreover, the magnitude of scalar fluctuations

increases with an increase in the respective scalar diffusivity.

= In the bulk fluid, o7 and o7, both follow a Ra,,;l/ ° scaling

« PDFs of supersaturation become broader with an increase in
absolute value of diffusivity difference. Also, PDEFs are slightly

negatively skewed for cases with low diffusivity difference,
unlike the 7" and ¢, PDEs.

« Both, scaling and numerical output suggests:
02 Ra’? /H®.

molst

« The analysis of numerical output shows similar order
contributions to the supersaturation variance from both
scalar variance and covariance.

=« Distribution of points in a pressure-temperature mixing
diagram deviate from the classical mixing line for isobaric
mixing, when D, # Dj.
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Figure 3: STDs of normalized water vapor mixing-ratio (left) and supersaturation fluctuation (right) at the domain center versus Ra,,ist, and their comparison

with scaling relations (dash-line) Ra
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