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Abstract

We perform physics-based simulations of earthquake rupture propagation on geometrically complex strike-slip faults. We

consider many different realization of the fault roughness and obtain heterogeneous stress fields by performing dynamic rupture

simulation of large earthquakes. We calculate the Coulomb failure function (CFF) for all these realizations so that we can

quantify zones of stress increase/shadows surrounding the main fault and compare our results to seismic catalogs. To do

this comparison, we use relocated earthquake catalogs from Northern and Southern California. We specify the range of fault

roughness parameters based on past observational studies. The Hurst exponent (H) varies in range from 0.5 to 1 and RMS

height to wavelength ratio ( RMS deviation of a fault profile from planarity) has values between 10-2 to 10-3. For any realization

of fault roughness, the Probability density function (PDF) values relative to the mean CFF change show a wider spread near

the fault and this spread squeezes into a narrow band as we move away from fault. For lower value of RMS ratio ( 10-3), we

see bigger zones of stress change near the hypocenter and for higher value of RMS ratio ( 10-2), we see alternate zones of stress

increase/decrease surrounding the fault to have comparable lengths. We also couple short-term dynamic rupture simulation

with long-term tectonic modelling. We do this by giving the stress output from one of the dynamic rupture simulation (of a

single realization of fault roughness) to long term tectonic model (LTM) as initial condition and then run LTM over duration

of seismic cycle. This short term and long term coupling enables us to understand how heterogeneous stresses due to fault

geometry influence the dynamics of strain accumulation in the post-seismic and inter-seismic phase of seismic cycle.
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Figure 1: Simulation stages and their typical range of contribution to the total running time along with Hercules’ solving algorithm.
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▲ Figure 1 (b)  Combined Fourier power spectra from the three faults analyzed (left) along the 
slip direction and (right) perpendicular to it. Dark lines represent power law fits for three 
self-similar rough surfaces (i.e., H = 1) with RMS = 0.1 L, RMS = 0.01 L and RMS = 0.001 L 
from bottom to top respectively (Reproduced from Candela et al., 2012).

▲ Figure 3. Top: Model setup. All simulations have same setup with similar modelling parameters 
but different fault profile. Bottom: The slip weakening law; A static frictional coefficient drops to dy-
namic value over a crictical slip distance. 

▲ Figure 8. Coupling short-term long-term models. (a) Dynamic rupture simulation grid with 
self-similar fault profile . (b) LTM mesh with initial fault zone extracted automatically. (c) Trac-
tions on the fault. Shear (blue) and normal(Red) traction values vary a lot due to geometry of 
the fault.  (d) Shear stress across fault after seismic waves have propogated away (this is the 
intial condition for LTM model) . (e) Plastic strain developed after couple of days. A highly 
damage zone is visible across the fault with develoment of new fractures.

We use the dynamic rupture propagation code fdfault v.1.0 written by Dr. Eric Daub to perform 
all simulations. This code solves elastodynamic wave equation using finite differences.
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We used Slip weakening law to model the friction present on the fault. To represent healing 
on the fault after failure, we will use shear transformation zone theory in future.

▲ Figure 2.  (a) Roughness profiles from the Corona Heights fault surface in directions parallel  
to slip (Along slip) . A magnified portion of the profiles is also shown to observe the properties 
of fault profile. (Reproduced from Candela et al., 2012).

Corona Heights fault Corona Heights fault

Bolu Fault Bolu Fault

Dixie Valley fault Dixie Valley fault

    Self affine fractals:
      Scaling transformation:                 x                                     βx
 
 
      The power spectral density:       

     Self Similar fractals:                   Special case when H = 1

          y                                      βH y
            P(k)  =  c k (-1 -2H)

 Table 1. Simulations plan indicating some of the important simulations that have been complet-
ed already.
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 Nucleation strategies considered:
 
 1) overstressing a certain patch length of fault.      2)  overstressing a single node point.  
 3) Using transient slip weakening.                          4) Transient overstressing.

 
 1) Northern and Southern California EQ Catalog  2) Slip inversions through SRCMOD.
          
  
  [Shearer et al., 2005, Waldhauser and Schaff, 2008, Mai and Thingbaijam, 2014].         

▲ Figure 5. (a) Positive CFF zones and their respective areas at different distances. Red color 
shows distance of 1 km while blue shows 5 km distance.  (b)  Joint pdf of positive CFF zones 
with a certain area and distance from fault. (RMS=0.01 and H=0.6)

▲ Figure 5. (c) CFF vs distance plot. The color represents(PDF values relative to the mean 
CFF. This plot is made using 100 realization of a rough fault with RMS ratio of ‘0.01’ and 
H value of ‘1.0’.

(c)

▲ Figure 6. Real aftershocks data of Loma prieta 1989 earthquake. Only those aftershocks are 
taken into consideration that have a distance less than 5 km from main fault rupture.  

We have coupled our short-term rupture dynamics code with the LTM. The LTM code  
DynEarthSol3D is a finite element code that solves the momentum balance and the heat 
transfer equation in Lagrangian form using unstructured meshes.

▲ Figure 4. (a) CFF of a single realization of rough fault with RMS ratio of ‘0.01’ and H value 
of ‘1’.  (b) CFF of a single realization of rough fault with RMS ratio of ‘0.01’ and H value of ‘0.6’. 
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▲ Figure 1.  Aftershocks distribution of Joshua Tree 1992 earthquake. Left: Map view Right: 
Cross-sectional view (figure taken from King et al., 1994)

▲ Figure 7. Joint pdf of Real quakes with certain rupture area and distance away from ruptured 
fault. (a) Combined aftershocks data   (b) Combined fore-shocks data. 
Combined aftershocks and foreshocks data compiled from (1984 Morgan Hill EQ, 1989 Loma 
prieta EQ, 1992 Landers EQ,1994 Northridge EQ and 1999 Hector-mine EQ). 
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Real geological faults and self affinity
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