Projected Climate Change Effects on Water Availability of the Metropolitan Region of São Paulo

Gabriela Gesualdo¹, Paula Siqueira¹, Jullian Sone¹, Pedro Zamboni¹, Rodrigo Pereira¹, and Paulo Tarso Oliveira¹

¹Federal University of Mato Grosso do Sul

November 22, 2022

Abstract

Climate change affects the global water cycle and has the potential to alter water availability for food-energy-water production and the ecosystems services on regional and local scales. In southeastern Brazil, the Cantareira Water Supply System reached unprecedented low levels in January 2015 compromising the water supply for the Metropolitan Region of São Paulo (MRSP). However, there is still few studies investigating the effects of climate change on water availability in this region. Here, we assess the influence of climate change on water availability in the Jaguari Basin, Southeastern Brazil using a modeling approach. This basin covers and area of about 1200 km2 and it is the main source of the Cantareira Water Supply System, responsible for providing water for about 7 million people in the MRSP. To evaluate climate change scenarios, we use the lumped conceptual HYMOD model on daily time step. This model was calibrated and evaluated using daily observed data of precipitation, evapotranspiration, and discharge for the period of 1990 to 2009. To evaluated climate change scenarios, we used data of an ensemble of 17 General Circulation Models (GCMs), downscaled by MarkSim GCM working off a 30 arc-second climate surface spatial resolution forced by two Representative Concentration Pathways (RCP): RCP 4.5 and RCP 8.5. These data were integrated into the HYMOD to projected scenarios (up to 2095) of water discharge. We find values of Nash-Sutcliffe Efficiency Coefficient (NSE) and Coefficient of Determination (R2) greater than 0.80 for the calibration and evaluation period. We also noticed an increase in the peak of runoff and a decrease and baseflow for both scenarios. Such changes reflect in a higher interannual variability, therefore, increasing the risk of drought and flood. In terms of Environmental Flow Requirement, the probability of exceedance Q90, reveal a clear pattern of decreasing, about 23% from 2010 to 2040, and reaching 28% by the end of the century. Our findings indicate that the water discharge could not be enough for the current and future water demand. Our results expose the fragility of the studied basin, presenting a technical and scientific information focusing on guiding the plans and strategies to deal with situations of water scarcity.

Gabriela C. Gesualdo¹, Paula P. Siqueira¹, Jullian S. Sone¹, Pedro A. P. Zamboni¹, Rodrigo B. Pereira¹, Paulo T. S. de Oliveira¹ ¹Federal University of Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil. E-mail: chiquito.gabriela@gmail.com

13/s)

10,00

1,00

We assessed the influence of climate change on water More severe availability in the Jaguari Basin using a modeling approach. droughts Rising sea **MATERIALS & METHODS** Calibration and Inputs Hotter and more precipitation validation of frequent hot days evapotranspiration HYMOD model Analysis of the Hymod > Achieving a balance between water model performance model availability and demand is one of the most pressing environmental 2008 2000 1990 1991 Output challenges the twenty-first in Calibration Validation Warm-up • Discharge century. 2014-2015 2000 2 Run HYMOD with climate change data **RCP 4.5** 17 GCMs **RCP 8.5** MarkSim GCM 2010 2095 It was the driest calendar 0.30°x0.30° year in its 123 years record. Exposed Brazil's biggest 3 Environmental metropolis to a crippling 2015 **Flow Requirement** water crisis. EFRs quantify water needed to (EFR) sustain the riverine ecosystem RESULTS — Simulated • Observe P12 7/13/2002 10/17/1999 Validation Jaguari river basin Calibration 0,80 0,79 Nash-Sutcliffe Efficiency Coefficient (NSE) Brasil 0,80 0,79 Coefficient of Determination (R^2) Cantareira São Paulo 3,56 6,36 Percent Bias Statistic (PBIAS) 0 800 1.600 km 0 10 20 Km

> The Southeast region of Brazil experienced two major droughts

laquari river basir

Projected Climate Change Effects on Water Availability of the Metropolitan Region of São Paulo

CONCLUSIONS

The projected climatic changes reflect a higher interannual variability, therefore, increasing the risk of drought and flood

- enough for future water demand
- situations.

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕES

A continued analysis of Water Security Indicators will be conduted in Sao Paulo Metropolitan Region. We will provide an important overview of climate change impacts on future water vulnerability and scarcity in the Jaguari basin, which can be used to guide the basin's water security plans and strategies.

This study is supported by grants from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -CAPES and the Ministry of Science, Technology, Innovation and Communication – MCTIC and National Council for Scientific and Technological Development – CNPq (grants 441289/2017-7 and 306830/2017-5)

Our findings indicate that the water discharge could not be

Our results expose the fragility of the studied basin, presenting technical and scientific information focusing on guiding plans and strategies to deal with water scarcity

FUTURE WORK

ACKNOWLEDGEMENTS