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Abstract

Larsen A and B ice shelves were affected by surface melt which preconditioned them for rapid disintegration due to hydrofracture

and densification. Recently, warm and dry foehn winds have been discovered to melt the vulnerable Larsen C Ice Shelf (LCIS)

surface via sensible heat transfer during polar night. The climatological extent and intensity of polar night surface melt and

their effects on the ice surface energy budget are unknown. Here we quantify the spatial pattern and temporal variability

of foehn winds and associated melt events during polar night to understand the ice shelf surface mass balance and indirect

implications for ice shelf vulnerability. Our Foehn Detection Algorithm (FonDA) uses events identified from in situ Automated

Weather Stations (AWS) to calibrate foehn detection from reanalysis data covering all of Antarctica and Greenland. We present

a climatology of foehn-driven surface melt days, melt water equivalent, fraction of melt that occurs during polar night, and the

surface energy budget. Preliminary results show that foehns perturb sensible heat fluxes by up to 300 Wm-2 and surface air

temperatures by up to 13 °C in the absence of shortwave radiation.

1



Template ID: perceptualpewter  Size: 48x36

  

Introduction

Foehn Winds on Larsen C Ice Shelf During Polar Night: Impacts on 
the Surface Energy Budget and Melt

Matthew K. Laffin1, Charles S. Zender1,2, Sameer Singh2

  1University of California, Irvine, Dept. of Earth System Science. 2University of California, Irvine, Dept. of Computer Science

Results Conclusions

Approach

Machine Learning

Acknowledgements
We thank the Institute for Marine and Atmospheric Research (IMAU) 
at Utrecht University, and the Antarctic Meteorological Research 
Center (AMRC) at the University of Wisconsin-Madison for providing 
Automatic Weather Station data. We also thank the European Centre 
for Medium-Range Weather Forecasts (ECMWF) for providing ERA5 
reanalysis data.

This material is based upon work supported by NASA AIST project 
number 80NSSC17K0540 and the National Science Foundation under 
grant number 1633631.

Contact Info: Matthew Laffin
mlaffin@uci.edu    

● Surface melt depletes firn air in Antarctic ice 
shelves and can lead to shelf disintegration, 
glacier acceleration, and sea level to rise. 

● Foehn winds enhance melt through large 
fluxes of sensible heat. 

● Automatic Weather Stations (AWS) provide 
in-situ measurements during foehn events 
with limited spatial representation.

● ERA5 reanalysis data can expand the spatial 
pattern of foehn winds, however do not 
represent surface conditions well.

Data
• AWS data: (AAWS) - University of Wisconsin-Madison and (IMAU)- 

Utrecht, University, Netherlands.
• Satellite derived reanalysis data: ERA5, 0.25 ° x 0.25 °
• Use Justified Automated Weather Station (JAWS) software for tilt 

correction and AWS data harmonization (Github: jaws/jaws)

Foehn Detection Algorithm (FonDA)
• Created FonDA to identify foehn wind events in AWS data.
• Use AWS FonDA to calibrate FonDA for ERA5 using gradient 

boosting decision tree Machine Learning (See Machine Learning)
FonDa uses variable thresholds to identify foehn wind during polar 
night (Figure 1)

• Temperature > 0 ℃
• Relative Humidity (RH) < 30th percentile
• Wind Speed > 60th percentile

Surface energy budget and melt
• Estimated the ice surface energy budget by iteratively solving for 

surface temperature with bulk formulas.
• Combined foehn events identified with Machine Learning FonDA 

and surface energy budget model to create a climatology of polar 
night melt and the surface energy budget on LCIS.

● Despite lack of shortwave radiation LCIS experiences surface 
melt during polar night due to foehn winds, confirmed using 
AWS height measurements and satellite based radar (Figure 
9)
○ ★ Large sensible heat fluxes dominate the surface 

energy budget during polar night foehn winds with a mean 
energy flux of 66.4 W/m2 (Figure 6).

○ ★ 2.5 % of the annual melt occurs during polar night 
(Figure 5).

○ ★ Mean melt of 0.01 m.w.e./yr occurs on LCIS with a 
maximum of 0.027 m.w.e./yr (Figure 3).

○ ★ Maximum polar night melt of 6.3 % occurs in cabinet 
inlet close to the Antarctic Peninsula Range  (Figure 7).

● Strong foehn signature east of the Peninsular Range due to 
topographic funneling of foehn winds and a change in 
topographic relief (Figures 3, 7).

● The use of ERA5 data and ML tends to underestimate surface 
melt by 20.4% compared to AWS data, but is expected to  
improve with better ML algorithms. 

Why use machine learning?
● Human driven FonDA requires extensive 

variable threshold analysis and only yields an 
F1-Score 0f 0.52 (Table 1a).

● ERA5 reanalysis data does not represent 
surface conditions during foehn wind events 
as compared to AWS data (Figure 8).

Figure 1: Foehn 
event at AWS 18 on 
LCIS, indicated by 
light grey shading. 

Machine Learning Model 
● Gradient Boosting Decision Tree (GBDT) 

classification to train and predict foehn events in 
ERA5 data.

● 23 ERA5 variables trained to predict foehn against 
AWS FonDA identified foehn events.

Evaluation
● Used hyperparameter optimization to maximise 

F1-score.
● 10 fold cross-validation to ensure model accuracy.

Figure 8: Light green to white shows increased density. 
a) AWS temperature compared to ERA5 temperature. 
b) AWS RH compared to ERA5 RH.

Precision Recall F1-Score

a) ERA5 FonDA 0.558 0.496 0.525

b) Machine 
Learning FonDA 0.771 0.664 0.719

Table 1: a) When Fonda is applied to ERA5 data to 
predict foehn. b) When machine learning FonDA is 
applied to ERA5 data to predict foehn.
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Larsen C Ice Shelf (LCIS)

Figure 2: Climatology of annual 
surface melt on LCIS (2007-2017).

Figure 3: ★ Climatology of polar night 
surface melt on LCIS (2007-2017). 

Figure 4: Climatology of polar day 
surface melt on LCIS (2007-2017). 

Figure 6: ★ Mean ice surface energy budget over LCIS 
during polar night (April-Sept) and polar day (Oct-March).

Figure 7: ★ Climatology of annual melt 
percent during polar night (2007-2017).
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Figure 9: Sentinel 1A C-band 
synthetic aperture radar imagery from 
Cabinet Inlet on LCIS. Red circles 
indicate darker surface melt ponds in 
polar night (late May 2016). 

We use machine learning (ML) to calibrate ERA5 reanalysis data 
using AWS data. We quantify the spatial and temporal extent of 
foehn wind melt events during polar night and their contribution 
to the total annual melt on the Larsen C Ice Shelf (LCIS).

Figure 5: ★ Mean annual 
melt vs. mean annual time 
foehn and non-fohn occur 
over LCIS during polar night 
(April-Sept) and polar day 
(Oct-March).
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Future Direction
We plan to... 
● Further improve FonDA using 

machine learning to increase 
model accuracy and melt 
estimation.

● Expand the research 
methodology to all of the 
Antarctic Ice Sheet as well as 
the Greenland Ice sheet.

● Use other datasets such as 
MERRA-2 reanalysis data.

a) b)

Percentage of Melt
in Polar Night


