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Abstract

We couple short-term (i.e. the co-seismic) and long-term (i.e. the inter-seismic) phase of an earthquake, in order to investigate
how induced static stress changes during the co-seismic phase of an earthquake cycle influence the dynamics of strain accumula-
tion during the inter-seismic phase. We perform dynamic rupture simulations on complex strike slip faults in 2D, incorporating
off-fault plastic failure and strong dynamic weakening on the fault governed by the slip weakening law. Our strike slip fault has
a self-similar fractal profile with RMS height taken from observational studies. Our dynamic rupture simulation results show
that the stresses in the region surrounding the fault are highly complex and heterogeneous. This heterogeneity in stresses is
mainly related to roughness of fault profile and at distances where fault roughness effects are not dominant, the stresses are
mostly uniform. We extract these complex stresses together with the plastic deformation from the dynamic model and use
them as the input to run the long-term tectonic model (LTM). This provides us insight into the dynamics of off-fault plastic
deformation in the loading phase of an earthquake. Our LTM results show that most of the shear zones (i.e. new features
e.g. fractures and faults) develop and grow at oblique angles to the main fault while considerable amount of damage keeps
accumulating along the immediate sides of the fault profile. The development and growth of these new features occurs in the
locations where geometrical bends in the fault profile has caused the deformation in the dynamic phase to be localized. This
localized deformation due to fault roughness acts as a seed for the development of new features. We conclude that the complex
damage pattern in the fault damage zones (observed in observational studies) is mainly due to the fault surface roughness effects.
During the co-seismic phase, the stresses concentrate near the fault bends due to rough fault profile. During the inter-seismic
phase, these locations are favored for the development of new features during the inter-seismic phase the earthquake.
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