Microlite Size Distributions and P-T-t-x (H2O) constraints of Central Plateau tephras, New Zealand: implications for magma ascent processes of explosive eruptions

Charline Lormand¹, Georg Zellmer¹, Geoff Kilgour², Yoshiyuki Iizuka³, Stuart Mead¹, Naoya Sakamoto⁴, Karoly Nemeth¹, Alan Palmer⁵, Anja Moebis⁵, Takeshi Kuritani⁶, and Hisayoshi Yurimoto⁷

¹Volcanic Risk Solutions, Massey University
²GNS Science Wairakei
³Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan
⁴Creative Research Institute, Isotope Imaging Laboratory, Hokkaido University
⁵Department of Soil Science, Massey University
⁶Graduate School of Science, Hokkaido University
⁷4Creative Research Institute, Isotope Imaging Laboratory, Hokkaido University

November 23, 2022

Abstract

Crystals within erupted volcanic rocks record geochemical and textural signatures during magmatic evolution prior to the onset of eruptions. Growth times of microlites can be derived through Crystal Size Distribution (CSD) analysis combined with well-constrained microlite growth rates, yielding petrologically-determined magma ascent timescales. Our newly developed, machine learning image processing scheme allows for the rapid generation of CSD, saving many hours of processing time, which previously involved hand-drawing the outer margins of crystals. For the present study, we examined a range of andesitic tephras from the Tongariro Volcanic Centre, New Zealand. A total of 228 plagioclase and pyroxene microlites CSDs were generated from individual tephra shards. All combined pyroxene and plagioclase microlite CSDs exhibit concave-up shapes, and similar intercepts and slopes at the smallest sizes. This implies similar growth durations of the smallest microlites of 15 ± 9 to 28 ± 15 (2σ) hours, regardless of the eruptive style or source, using an orthopyroxene microlite growth rate constrained from one of the samples. The orthopyroxene thermometer and the plagioclase hygrometer reveal the magmas were erupted at \sim 1079 to 1149 (±39 SEE), and H2O contents ranging from 0-0.4 to 0-1.7 wt.% (95% confidence maxima). In the absence of CO2, these results indicate shallow H2O exsolution pressures of < 240 bars, using a recent H2O-CO2 solubility model. Given the microlite residence times, shallow H2O exsolution driving microlite growth is inconsistent with the explosivity of the eruptions. Instead, our data suggest that the melts either carried large amounts of CO2, triggering earlier degassing of volatiles including H2O, or that microlite crystallisation began prior to degassing. Ongoing work investigates the H2O and CO2 contents hosted by melt inclusions in phenocrysts and microphenocrysts in these tephras to provide constraints on magma ascent rates, with implications for hazard characterization and mitigation.

Microlite Size Distributions and P-T-t-X (H₂O) constraints of Central Plateau tephras, New Zealand: implications for magma ascent processes of explosive eruptions C. Lormand^{1*}, G. F. Zellmer¹, G. Kilgour², Y. lizuka³, S. Mead¹, N. Sakamoto⁴, K. Németh¹, A. S. Palmer⁵, A. Moebis⁵, T. Kuritani⁶, H. Yurimoto⁴

This research is funded by:

Ministry of Business, Innovation & Employment

Introduction

- Taupo Volcanic Zone (TVZ): southern end of the Tonga-Kermadec arc-backarc system affected by oblique subduction, clockwise rotation and extension e.g., [1] (*Fig.* 1)
- > Tongariro Volcanic Centre (TgVC): andesitic compound structure at the southern end of the Taupo Volcanic Zone
- Multiple dispersed eruptive centres and vents producing events of various eruptive styles
- crystallisation > Microlite due to decompression-induced degassing (e.g., [3] to [6]), change in eruptive style shortly before the eruption [7]
- tool to assess ascent \succ CSD \rightarrow processes, and residence times when growth rate can be constrained (e.g. [8] to [11])
- ➢ <u>Aim:</u> use constrain magma processes and timescales

Methods and Materials

- BSE images of glass shards using FE-SEM
- Semi-automatic segmentation of plg and px microlites for CSD [12]
- Generation of CSDs using Csd_slice [13] and CSDCorrections [14]
- EPMA glass and microlite analyses
- > Iteration of the plagioclase hygrometer [15], orthopyroxene thermo-barometer [16]

Table: description of tephra samples used for this research

ERUPTIVE SEQUENCE	AGE/DATE	MAIN ERUPTION STYLE	COMMENTS
Ruapehu 1995 -1996	1995 -1996	Strombolian, phreatomagmatic and sub-Plinian	1995 sample:sub-Pliniar 1996 sample : ash bomb explosion
Ngauruhoe 1972 - 1975	1972 - 1975	Strombolian and Vulcanian	Steaming, block and ejections and flows, eruptive columns
Tufa Trig	0 - 1.7 ka ago	Small volume Strombolian and phreatomagmatic	Focusing on Tf8, Tf1 Tf14, Strombolian, ra sub-Plinian
Mangatawai	1.7 - 3.5 ka ago	Small explosive up to sub-Plinian, mostly Vulcanian	Frequent, intermittent, thin deposits contain beech leaves
Mangamate	11 - 12 ka ago	Plinian	Large eruptions over a speriod and from sevents along a fissure

¹VRS, Massey University, NZ; *C.Lormand@massey.ac.nz; ²GNS Science, NZ; ³Institute of Earth Sciences, Academia Sinica, Taiwan; ⁴IIL, Hokkaido University, JP; ⁵Department of Soil Sciences, Massey University, NZ; ⁶Graduate School of Science, Hokkaido University, JP

Figure 2:

CSD plots of pyroxene (a) and plagioclase (b) microlites from andesitic glass shards of the TgVC tephras

A total of 228 CSDs were generated and combined when within error of each others.

A total of more than 65,000 pyroxene and plagioclase microlites are considered using the semi-automatic method for CSD generation from BSE images [13].

CSDs → Concave-up crystals mixing of populations (>50 μm micro-phenocrysts and microlites)

Figure 3:

Pyroxene and plagioclase CSD steepest slopes, and opx residence time. The slope and the growth rate are combined to obtain the residence time

The orthopyroxene growth rate used was calculated for Mangatawai: 3 to 6×10⁻¹¹ m.s⁻¹ [26].

Figure 4: Temperature plotted against the water content for the TgVC andesitic tephras

- > CSD slopes at smallest sizes (Fig. 3) are similar for different eruptive sequences and eruptive styles (Table)
- > Similar slopes for opx and plg \rightarrow crystallised concomitantly
- (*Fig. 3*) \rightarrow long timescales for microlites!
- \succ Plg growth rates of 1.4×10⁻¹¹ to 1.9×10⁻¹⁰ m.s⁻¹ using opx residence times \rightarrow in the range of experimental growth rates determined in previous works ([3] & [27])

> Analyses of melt inclusions in microlites and micro-phenocrysts using 1270 ion probe equipped with SCAPS (Isotope Imaging Laboratory, Hokkaido, Japan) \rightarrow better constrain on H₂O and pressure Figure 5: SCAPS images of plagioclases Figure 6: FE-SEM maps of orthopyroxenes

- orthopyroxene [32] micro-phenocrysts

[1] Mortimer et al., (2010) JVGR 190:1-10. [2] Gómez-Vasconcelos et al., (2017) GSA 129(9-10):1085-1099. [3] Couch et al., (2003) J. Petrol. 44(8):1477-1502. [4] Lipman and Banks (1987) USGS Prof. Paper, 1350:1527-1567. [5] Pinkerton and Sparks (1978) Nature, 278:383-385. [6] Swanson et al., (1989) Bull. Volcanol., 51:161-176. [7] Sable et al., (2009) in "Studies in volcanology : the legacy of George Walker" vol. 2. [8] Cashman (1992) Contrib. to Min. and Petr., 109:421-449. [9] Noguchi et al., (2008) JVGR 175:141-155. [10] Toramaru et al., (2008) JVGR, 175:156-167. [11] Marsh (1988) Contrib. Min. Petrol. 99:277-291. [12] Lormand et al., (in rev.) Microscopy & Microanalysis. [13] Morgan and Jerram (2006) JVGR, 154:1-7. [14] Higgins (2000) Am. Min. 85:1105-1116. [15] Waters and Lange (2015) Am. Min. 100(10):2172-2184. [16] Putirka (2008) in "Reviews in Mineralogy and Geochemistry vol. 69" pp. 61-120. [17] Christenson (2000) JVGR 97(1-4):1-30. [18] Hobden et al., (2002) Bull. Volcanol., 64:392-409. [19] Nairn and Self (1978) JVGR 3(1):39-60. [20] Donoghue et al., (1997) Bull. Volcanol., 59(2):136-146. [21] Moebis et al., (2011) Quat. Int. 246:352-363. [22] Donoghue et al., (1995) J. Roy, Soc. NZ., 25(2):115-206. [23] Nakagawa et al., (1998) JVGR 86:45-65. [24] Topping (1973) NZ. J. Geol. Geoph., 16(3):375-395. [25] Hitchcock and Cole (2007) NZ J. Geol. Geoph., 50(2):53-66. [26] Zellmer et al., (2016, Corrigendum in 2018) Geochimica et Cosmochimica Acta 185:383-393. [27] Hammer et al., (1999) Bull. Volcanol., 60:355-380. [28] Arpa et al., (2017) Bull. Volcanol., 79:56. [29] Auer et al., (2016) JVGR, 325:203-210. [30] Papale et al., (2006) Chem. Geol., 229:78-95. [31] Morgan and Blake (2006) Contrib. Mineral. Petrol., 151(1):58-70. [32] Krimer and Costa (2017) Geochimica et Cosmochimica Acta 196:271–288. [33] Zellmer et al., (2016) Frontiers in Earth Sciences 4(88).

> Opx residence times of 10±6 to 34±19 hours > Our data point to ascent of hot $(T_{average} = 1117 \ ^{\circ}C), \text{ low } H_2O \ (0.4 - 100)$ 1.7 wt.% H_2O 2 σ -maxima) magmas in line with data found in TgVC by previous workers ([28] & [29]) and very shallow degassing (i.e. <500m, [30])

Ascent rate of less than 1.4 cm/s if degassing-induced crystallisation... TgVC microlites crystallised prior to H₂O degassing

Future work

> Element maps of pyroxene microlites reveal cryptic phase zoning [33] in Ca and Cr layers along the long-axis of pyroxene microlites (*Fig. 6*)

References