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Abstract

Gaussian decomposition and Singular Value Decomposition combined with Non-Negative Least Squares (SVD-NNLS) method

are compared and combined to estimate the concentration of 18 phytoplankton pigments (names and abbreviations are displayed

in Table 2) from phytoplankton absorption spectra. Results show that both methods tend to overestimate pigment concentration.

Gaussian decomposition method provides robust estimation of TChl-a, TChl-b, Chl-c1/2, PSC and PPC. The estimates of TChl-

a, Fuco, Diato, $\beta$-Caro, Prasino, TChl-b, Zea, Viola and Lut from SVD-NNLS show reasonable estimation accuracy,

while the other pigments are subjected to relatively large prediction errors. The estimated pigments concentrations are further

exploited based on Diagnostic Pigment Analysis to derive four phytoplankton functional types, i.e. diatoms, prymnesiophytes,

green algae and prokaryotes. By the application of these two methods to the particulate absorption spectra collected by

underway spectrophotometry during three summer cruises in 2015 - 2017 in the Fram Strait, continuous surface phytoplankton

functional types are estimated along the cruise course.
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Abstract

Gaussian decomposition and Singular Value Decomposition combined with Non-Negative
Least Squares (SVD-NNLS) method are compared and combined to estimate the concen-
tration of 18 phytoplankton pigments (names and abbreviations are displayed in Table 2)
from phytoplankton absorption spectra. Results show that both methods tend to overesti-
mate pigment concentration. Gaussian decomposition method provides robust estimation
of TChl-a, TChl-b, Chl-c1/2, PSC and PPC. The estimates of TChl-a, Fuco, Diato, β -Caro,
Prasino, TChl-b, Zea, Viola and Lut from SVD-NNLS show reasonable estimation accu-
racy, while the other pigments are subjected to relatively large prediction errors. The esti-
mated pigments concentrations are further exploited based on Diagnostic Pigment Analysis
to derive four phytoplankton functional types, i.e. diatoms, prymnesiophytes, green algae
and prokaryotes. By the application of these two methods to the particulate absorption
spectra collected by underway spectrophotometry during three summer cruises in 2015 -
2017 in the Fram Strait, continuous surface phytoplankton functional types are estimated
along the cruise course.

1 Introduction
Knowledge on phytoplankton pigments (some are abbreviated as Table 2) is critical to under-
standing the impacts of the changing environment on primary productivity (Uitz et al., 2009),
phytoplankton diversity and taxonomic composition. In remote sensing applications, the pig-
ment databases have been extensively used in developing, validating or refining bio-optical al-
gorithms for estimating phytoplankton biomass and functional types (Bracher et al., 2017, and
references therein). These databases are mainly based on high-performance liquid chromatog-
raphy (HPLC) analysis of discrete water samples. This technique is limited by repeat frequency
and spatial coverage. While HPLC pigment analysis remains indispensable, it is invaluable to
explore methods that enable easier availability of high resolution pigment data.

Attempts have been made to quantify the concentration of various phytoplankton pigments
from optical measurements (e.g. absorption or reflectance spectra) since they currently remain
the only means of collecting synoptic scale information. Among these methods, the decom-
position of spectra into Gaussian functions (Hoepffner & Sathyendranath, 1993; Lohrenz et
al., 2003; Chase et al., 2013) and spectral reconstruction (e.g. Moisan et al., 2011) are com-
monly used. The shipboard underway spectrophotometry greatly facilitates the acquisition of
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particulate absorption spectra (ap(λ )) with unprecedented temporal and spatial resolution (e.g.
Dall’Olmo et al., 2009, 2011, 2012; Slade et al., 2010; Westberry et al., 2010; Boss et al., 2013;
Chase et al., 2013; Werdell et al., 2013; Brewin et al., 2016; Liu et al., 2018). It has been proved
to successfully provide continuous surface TChl-a data along cruise tracks (Westberry et al.,
2010; Slade et al., 2010; Boss et al., 2013; Werdell et al., 2013; Brewin et al., 2016; Liu et
al., 2018). Furthermore, Gaussian decomposition has been performed by Chase et al. (2013) to
retrieve major pigment groups from a large global underway AC-S derived ap(λ ) data set. A
widespread investigations of phytoplankton abundance and distribution can be expected if the
pigment data derived from this technique is further exploited.

The Fram Strait is the only deep connection between the North Atlantic and Arctic Oceans
(Figure 1(a)). The studies of phytoplankton community composition in this region are mainly
based on discrete water sample analysis or moored sediment traps. In situ optical measurements
are insufficient. In particular, no local algorithms for phytoplankton composition nor pigment
inversion from light absorption measurements have been developed.

In this study, we investigate the performances of two approaches, namely Gaussian decom-
position and the singular value decomposition combined with non-negative least squares (SVD-
NNLS), in determining the concentrations of either individual pigments or pigment groups (e.g.
PPC or PSC) from ap(λ ) obtained from underway spectrophotometry during three Fram Strait
cruises. Their applicability to the Fram Strait and its vicinity was assessed. Finally, these con-
tinuous underway pigment data were analysed to obtain the contribution of four phytoplankton
functional types, i.e. diatoms, prymnesiophytes, green algae and prokaryotes, to total biomass.

2 Data and Methods

2.1 Data Collection
Data were collected during three expeditions on R/V Polarstern: PS93.2 (July-August 2015),
PS99.2 (June-July 2016) and PS107 (July-August 2017). Sampling sites were located in the
Fram Strait and its vicinity, ranging from approximately latitudes 72◦ to 80◦N and longitudes
10◦W to 15◦E (Figure 1(a)).

Continuous ap(λ ) and discrete pigment concentration measurements of the surface water
were performed for each expedition. Sampling methods and data analysis have been described
in detail by Liu et al. (2018). Table 2 depicts the names and abbreviations of each pigment
as well as the pigment groups used in this study. In addition, absorption coefficient of non-
algal particles (aNAP(λ )) in discrete water samples was measured for the determination of the
spectral slope that will be used in subsequent data analysis. aNAP(λ ) has been recognized to
vary approximately in an exponentially decaying function (Bricaud et al., 1998; Babin et al.,
2003):

aNAP(λ ) = aNAP(400) e−S(λ−400) (1)

where S is the spectral slope of the aNAP(λ ) spectrum. Equation 1 was fitted to aNAP(λ ) for
data between 380-700 nm excluding the 400-480 nm and 620-700 nm ranges using non-linear
least squares method (Babin et al., 2003). The median value of S for all three expeditions is
0.016, which is used in the decomposition of AC-S derived ap(λ ) to obtain aph(λ ) (detailed in
2.2.2).
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2.2 Retrieval of Phytoplankton Pigments
2.2.1 Statistics

AC-S derived ap(λ ) averaged within the period of 10 minutes before and after HPLC sam-
pling time were collocated with HPLC pigments data. aph(λ ) was then obtained by numerical
decomposition. In total, 299 match-ups were obtained, which were subsequently used as the
pigment retrieval data set.

For the development of pigment retrieval models, all the match-up points were used as train-
ing data. Statistics for applying the model on the training data include the slope (S) and the in-
tercept (I) of Model-1 Bisquare robust linear regression, the determination coefficient (R2), the
root mean square error (RMSE), the mean absolute error (MAE) and Relative Percentage Dif-
ference (RPD) (Equations see Liu et al. (2018)). For model evaluation, ten-fold cross-validation
was performed (MATLAB function crossvalind) to estimate likely performance of each model
on out-of-sample data, according to Kohavi et al. (1995). The pigment inversion data set was
split into 10 equal partitions (or "folds"), with one fold being the testing set and the union of
the other folds being the training set. Statistics were iteratively calculated for 10 times, using
a different fold as the testing set each time. The model prediction error for out-of-sample data
was defined as the average of the 10 sets of statistics.

2.2.2 Gaussian Decomposition

Following Chase et al. (2013), AC-S ap(λ ) was decomposed into 12 Gaussian functions and
one aNAP(λ ) exponential function expressed by Equation 1 in the range of 400-700 nm. Each
Gaussian function (agaus(λ )) represents the absorption by a certain phytoplankton pigment or
pigment group. The absorption by the water-soluble photosynthetic pigment phycoerythrin
was also represented as a Gaussian function. The peak location and width of each Gaussian
function shown in Table 2 were defined with fixed values based on known pigment absorption
shapes (Bricaud et al., 2004).

The amplitude of aNAP(400) was derived and used to reconstruct aNAP(λ ) according to
Equation 1. aph(λ ) was obtained by differencing ap(λ ) and aNAP(λ ). To evaluate the goodness
of the decomposition, ap(λ ) was reconstructed by the linear combination of derived agaus(λ )
for all the pigments and aNAP(λ ) and then compared to that before decomposition. The relative
median error of all the match-up points at each band is calculated as:

emedian(λ ) = median o f
|ap(λ )AC−S−ap(λ )reconstruct |

ap(λ )AC−S
×100 (2)

The amplitude of each Gaussian function agaus(λ0) was compared to HPLC pigment con-
centrations by fitting the power function using Bisqaure robust non-linear least squares method.

2.2.3 Singular Value Decomposition - Non-Negative Least Squares (SVD-NNLS)

Phytoplankton absorption spectra aph(λ ) can be reconstructed as the linear combination of
the absorption spectra of individual pigments that equals to the pigment-specific absorption
coefficient multiplied by pigment concentration (Bidigare et al., 1987). When there is more
than one samples, this can be written in matrix form as:ci=1, j=1 · · · ci=m, j=1

... . . . ...
ci=1, j=n · · · ci=m, j=n


 ã∗i=1(λ )

...
ã∗i=m(λ )

=

aph, j=1(λ )
...

aph, j=n(λ )

⇐⇒ C · Ã = Aph (3)
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where c is the observed pigment concentration, ã∗(λ ) is the derived pigment-specific absorption
coefficient, n is the number of samples, i is the sample index, m is the number of pigments mea-
sured in each sample and j is the pigment index. At this point, the observed collocated pigment
concentration (matrix C) and aph(λ ) (matrix Aph) are involved in a set of linear algebraic equa-
tions. The solution of these linear equations is the unknown matrix Ã with the elements being
the inverted pigment-specific absorption coefficient ã∗i,i=1:m(λ ). The derived Ã was then used
combined with Aph to derive matrix C̃ in Equation 11 - the estimated pigmtent concentration.ã∗i=1(λ1) · · · ã∗i=m(λ1)

... . . . ...
ã∗i=1(λl) · · · ã∗i=m(λl)


 c̃i=1, j=1...n

...
c̃i=m, j=1...n

=

aph, j=1...n(λ1)
...

aph, j=1...n(λl)

⇐⇒ Ã · C̃ = Aph (4)

where ã∗(λ ) is the derived pigment-specific absorption coefficient by solving Equation 10, c̃ is
the estimated pigment concentration, n is the number of samples, i is the sample index, m is the
number of pigments measured in each sample, j is the pigment index and l is the number of
wavelengths.

Based on the above theory, Moisan et al. (2011) developed the SVD-NNLS approach to
estimate phytoplankton pigment concentration, i.e. solving Equation 3 with SVD and Equation
4 with NNLS. Here, their SVD-NNLS approach was adapted and tested using our data set.
aph(λ ) was normalized by the pigment package effect index at 675 nm (denoted as âph(λ ))
(Moisan et al., 2011).

3 Results

3.1 Characteristics of the absorption-pigment data set
Figure 1(b) illustrates the ap(λ ) spectra derived from underway AC-S measurements collocated
to HPLC data. These spectra show two absorption maxima in blue (∼ 440 nm) and red (∼ 675
nm) spectrum domains. Additionally, most ap(λ ) spectra also exhibit a shoulder peak in the
region of 460-500 nm. The blue spectrum domain is absorbed by chlorophylls and carotenoids
and the red domain is primarily absorbed by chlorophyll-a and to a lesser extent by chlorophyll-
b and chlorophyll-c. The magnitudes of ap(440) and ap(675) vary in the range of 0.007-0.258
m−1 (median: 0.043 m−1) and 0.0008-0.086 m−1 (median: 0.013 m−1), respectively. TChl-
a-specific particulate absorption coefficient (a∗p(λ )) at 440 nm (a∗p(440)) varies from 0.031 to
0.289 m2 mg−1 (median: 0.059 m2 mg−1), whilst a∗p(675) varies from 0.008 to 0.105 m2 mg−1

(median: 0.018 m2 mg−1).
TChl-a concentration determined by HPLC at the discrete water samples spans the range

0.065-3.868 mg m−3, with 9.4%, 84.3% and 6.3% of the data <0.2 m2 mg−1 (oligotrophic),
between 0.2 and 2 m2 mg−1 (mesotrophic) and >2 m2 mg−1 (eutrophic), respectively (trophic
state level referred to Bricaud et al. (2004)). Only TChl-a, Fuco, Hex and PSC have a mean
concentration greater than 0.2 mg m−3. Other than that, the pigments with mean concentration
greater than 0.05 mg m−3 are Chl-c1/2, Diadino, TChl-b, and PPC. Large standard deviation
were observed within individual pigments, and the ratio of standard deviation to mean value are
in the range of 0.58 to 2.04.

3.2 Gaussian Decomposition
As shown in Figure 2(a), the emedian(λ ) of the reconstructed ap(λ ) is small. It is less than 10%
for the range 400-690 nm and reaches the largest value ∼21% at ∼698 nm, indicating a good

4



accuracy of the decomposition. Significant correlations were found between the Gaussian func-
tion amplitudes and the corresponding pigment concentration (R2 > 0.49) (Table 1). Among all
the Gaussian functions representing TChl-a, the amplitude at 435 nm provides the best power
relationship with TChl-a concentration (R2 = 0.86,RMSE = 0.310), closely followed by the one
at 675 nm. agaus(638) is much better correlated with Chl-c1/2 than agaus(584), while agaus(660)
provides slightly better correlation with TChl-b than agaus(470). PSC is well correlated with
agaus(523), whereas agaus(492) and PPC has the poorest relationship. Our data are comparable
to the results from the Tara expedition (Chase et al., 2013) except for TChl-b. This is probably
because of a small TChl-b range of values in this study.

Subsequently, agaus(435), agaus(660), agaus(638), agaus(523) and agaus(492) were used for
predicting the concentration of TChl-a, TChl-b, Chl-c1/2, PSC and PPC. The measured and
estimated TChl-a, TChl-b and Chl-c1/2 using all the match-up data (training set) show consis-
tency with each other (Figure 3). Statistics based on ten-fold cross validation is shown in Table
2. Overall, all five pigments were reasonably retrieved, but overestimated (indicated by positive
RPD). TChl-a has the least prediction error and was overestimated by 12.2%. TChl-b has the
second least prediction error, but with a low R2 possibly because of a narrower data range than
the other four pigments (Table 1). Similarly, PPC was in a relatively small data range but better
estimated than PSC and Chl-c1/2 in terms of MAE and RPD.

3.3 SVD-NNLS
The pigment-specific absorption coefficients (ã∗i (λ )) for the 18 pigments were obtained by solv-
ing Equation 3 using SVD. Each ã∗i (λ ) spectra varies smoothly across the full bands. Negative
coefficients are possible because they are solved by pure matrix inversion, which is different
from the real in vivo a∗i (λ ). The calculated ã∗i (λ ) for various pigments were used to solve Equa-
tion 4 to estimate the corresponding pigment concentration (c̃i). âph(λ ) were reconstructed by
use of ã∗i (λ ) and c̃i according to Equation 4. The emedian(λ ) of the reconstruction for all the
match-up points was calculated according to Equation 2. As displayed in Figure 2(b), similar
to Gaussian decomposition method (Figure 2(a)), the emedian(λ ) is less than 6% for the range
400-690 nm and reaches the largest value∼16% at∼698 nm, indicating a good accuracy of the
decomposition and that the negative ã∗i (λ ) did not render the spectral reconstruction.

For comparison, the estimated TChl-a, TChl-b and Chl-c1/2 from training set were plotted
again the HPLC measured ones (Figure 3). The overlapping of the data points in Figure 3(a-c)
reveals similar training accuracy obtained by SVD-NNLS as by Gaussian decomposition. The
statistics for pigment retrieval are shown in Table 2. Except for Allo, α-Caro, But, Viola, Lut,
Zea and TChl-b, the estimates of all the other pigments show strong correlation with the HPLC
measured values (R2 > 0.25). Overall, all the pigments were overestimated, as implied by a
positive RPD. TChl-a has the smallest prediction error (RMSE=0.316, MAE=0.215) and was
overestimated by 39.6%. Furthermore, Fuco, Diato, β -Caro and Prasino have both relatively
lower estimation errors and strong measure-estimation correlations. Additionally, TChl-b, Zea,
Viola and Lut show reasonable estimation accuracy. In contrast, Chl-c3, α-Caro, Hex and But
were poorly estimated, with larger RMSE and MAE than other pigments and RPD greater than
200%.

3.4 Phytoplankton functional types retrievals
Based on the statistics in Table 2, the concentration of various pigments were estimated from the
underway AC-S ap(λ ) data where there were no collocated HPLC data. TChl-b was estimated
using Gaussian decomposition, due to its outperformance over SVD-NNLS for TChl-b, whereas
Fuco, Peri, Hex, But, Allo and Zea were estimated using SVD-NNLS. These pigment estimates
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were subsequently analysed with Diagnostic Pigment Analysis according to Losa et al. (2017)
for the derivation of the contribution of diatoms, prymnesiophytes, green algae and prokaryotes
to total biomass. Figure 4 shows an example of the comparison of the time series of the four
phytoplankton functional types derived from AC-S and HPLC. The functional types estimated
from AC-S data exhibit a general agreement with those from HPLC, however, yet much more
highly resolved during the cruise periods.

4 Discussion
In this study, both methods invert pigments by the use of the relationships between phytoplank-
ton absorption and pigments concentration. These relationships are mainly modulated by pig-
ment package effect which is not so far accounted for. It is a function of phytoplankton cell size
and pigment composition. For the Gaussian decomposition method, the absorption of individual
pigments or pigment groups are separated and related to corresponding pigment concentration.
Therefore, the data scatter around the regression line between agaus(λ0) and pigment concentra-
tion (Table 1) is not affected by the differences in pigment composition but mainly by cell size.
In addition, to some extent the covarying absorption by more than one pigment that failed to be
separated by this method can also enhance this scatter. For SVD-NNLS, Moisan et al. (2011)
have found that after correcting aph(λ ) with the package effect factor at 675 nm, the reconstruc-
tion of aph(λ ) using inverted pigment-specific absorption and inverted pigment concentration
shows a dramatic improvement as compared to the use of inversions done using the original
measured absorption spectra. Note that this correction is a simplification of package effect cor-
rection by assuming that the package effect factor is wavelength-independent and equals to that
at 675 nm. Therefore, better inversion accuracy can be expected by further deciphering package
effect and quantifying the influence of cell size to the absorption - concentration relationship.

5 Conclusions
In this study, we tested the applicability of two approaches, i.e. Gaussian decomposition and
SVD-NNLS for retrieving phytoplankton pigments from ap(λ ) collected by underway spec-
trophotometry in the Fram Strait, European Arctic Ocean. Although both methods tend to
overestimate specific pigment concentration, the combination of the methods still provide ro-
bust estimates for many of the tested 18 phytoplankton pigments and two pigment groups (PSC
and PPC). The Gaussian decomposition method provides robust estimation of TChl-a, TChl-
b, Chl-c1/2, PSC and PPC. The SVD-NNLS method allows a reasonably good estimation of
TChl-a, Fuco, Diato, β -Caro, Prasino, TChl-b, Zea, Viola and Lut. Other pigments are sub-
jected to relatively large prediction errors. Based on Diagnostic Pigment Analysis, diatoms,
prymnesiophytes, green algae and prokaryotes were determined by combining the results from
the two inversion methods. This enables not only the obtaining of high resolution phytoplankton
pigment data but also a generation of a continuous high resolution data set on TChl-a concen-
tration of key phytoplankton groups in this region. By the application of these two methods to
underway spectrophotometry data sampled during three summer cruises in 2015 - 2017 in the
Fram Strait, continuous surface phytoplankton functional types were estimated along the cruise
course.
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(a) (b)

Figure 1: (a) Expedition tracks for PS93.2 (July-August 2015), PS99.2 (June-July 2016) and
PS107 (July-August 2017) for collocated AC-S and HPLC measurements; (b) AC-S derived
ap(λ ) spectra collocated with HPLC measurements.
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(a) (b)

Figure 2: The relative median error emedian(λ ) of the reconstructed ap(λ ) from (a) Gaussian
decomposition method and (b) SVD-NNLS method.

(a) (b) (c)

Figure 3: Comparison of HPLC measured and Gaussian decomposition or SVD-NNLS esti-
mated concentration of TChl-a (a), TChl-b (b) and Chl-c1/2 (c) for all the match-up points.
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Figure 4: Time series of the contribution of diatoms, prymnesiophytes, green algae and prokary-
otes to total biomass derived from both AC-S (black dots) and HPLC (red circle).
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Table 1: The center wavelengths and widths of the Gaussian functions for phytoplank-
ton pigments and pigment groups, and the statistics for the power function regression:
pigment concentration = A∗agaus(λ0)

B.
λ0(nm) σ pigment A B R2 RMSE
406 16 TChl-a 17.60 0.90 0.75 0.391
434 12 TChl-a 41.60 1.12 0.86 0.310
453 12 0.03(TChl-b)+0.07(Chl-c1/2)a 1.18 1.23 0.92 0.006
470 13 TChl-b 0.38 0.50 0.52 0.029
492 16 PPC 1.21 0.54 0.49 0.090
523 14 PSC 25.05 0.92 0.76 0.306
550 14 phycoerythrin - - - -
584 16 Chl-c1/2 11.54 0.84 0.68 0.101
617 13 TChl-a 19.78 0.56 0.65 0.461
638 11 Chl-c1/2 49.94 1.03 0.81 0.079
660 11 TChl-b 0.65 0.44 0.56 0.027
675 10 TChl-a 19.72 0.76 0.82 0.363
aChase et al. (2013); Bricaud et al. (2004).
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