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Abstract

Low-cost fine particle mass (PM2.5) sensors enable dense networks to increase the spatial resolution of air quality monitoring.

However, these sensors are affected by environmental factors such as temperature and humidity, which must be accounted for

to improve their in-field accuracy. We conduct long-term tests of two low-cost PM2.5 sensors: Met-One NPM and PurpleAir

PA-II units. We find a high level of self-consistency within each sensor type after testing 25 NPM and 9 PurpleAir units. We

develop corrections for the low-cost sensor measurements to better match regulatory-grade data through collocation with Beta

Attenuation Monitors (BAM). The first correction based on a physical model accounts for hygroscopic growth using particle

composition and corrects for particle mass below the optical sensor detection limit by collocation with a BAM. A second fully-

empirical correction uses linear or quadratic functions of environmental variables. Either model yields comparable improvements

over raw measurements. Sensor performance is assessed for two use cases: improving community awareness of air quality with

short-term qualitative comparisons of sites and providing long-term quantitative information for health impact studies. For the

short-term case, either sensor can provide reasonably accurate concentration information (mean absolute error of ˜4 μg/m3)

in near-real time. For the long-term case, tested using year-long collocations at one urban background and one near-source

site, error in the annual average is reduced below 1 μg/m3. These sensors are thus suitable for supplementing regulatory-grade

instruments in sparsely monitored regions and for conducting hotspot mapping to understand air quality variability in urban

areas.
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Abstract 9 

Low-cost fine particle mass (PM2.5) sensors enable dense networks to increase the spatial 10 

resolution of air quality monitoring. However, these sensors are affected by environmental factors 11 

such as temperature and humidity and their effects on ambient aerosol, which must be accounted 12 

for to improve the in-field accuracy of these sensors. We conducted long-term tests of two low-13 

cost PM2.5 sensors: Met-One NPM and PurpleAir PA-II units. We found a high level of self-14 

consistency within each sensor type after testing 25 NPM and 9 PurpleAir units (and after rejecting 15 

several malfunctioning PurpleAir units). We developed two types of corrections for the low-cost 16 

sensor measurements to better match regulatory-grade data. The first correction accounts for 17 

aerosol hygroscopic growth using particle composition and corrects for particle mass below the 18 

optical sensor size cut-point by collocation with reference Beta Attenuation Monitors (BAM). A 19 

second, fully-empirical correction uses linear or quadratic functions of environmental variables 20 

based on the same collocation dataset. Either model yielded comparable improvements over raw 21 

measurements. Sensor performance was assessed for two use cases: improving community 22 

awareness of air quality with short-term qualitative comparisons of sites and providing long-term 23 

quantitative information for health impact studies. For the short-term case, either sensor can 24 

provide reasonably accurate concentration information (mean absolute error of ~4 µg/m3) in near-25 

real time. For the long-term case, tested using year-long collocations at one urban background and 26 

one near-source site, error in the annual average was reduced below 1 µg/m3. These sensors are 27 

thus suitable for supplementing regulatory-grade instruments in sparsely monitored regions, 28 

neighborhood-scale monitoring, and for better understanding spatial patterns and temporal air 29 

quality trends across urban areas. 30 

1. Introduction 31 

The negative health impacts of exposure to particulate matter smaller than 2.5 micrometers (PM2.5) 32 

are well documented (e.g. Schwartz et al. 1996; Pope et al. 2002; Brook et al. 2010). Even 33 

relatively small changes in particulate concentrations can have significant impacts on human 34 

health and mortality (Lepeule et al. 2012). Reductions in PM2.5, even in low concentration 35 
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environments, can have substantial benefits (Apte et al. 2015). Accurate monitoring of PM2.5 is 36 

thus important for a variety of applications, including long-term health studies, assessing the 37 

impacts of technology and/or regulatory changes on emissions, and supporting decision-making 38 

for future regulatory efforts or to alter individual behavior in real-time. Monitoring is especially 39 

of interest in urban areas where the high density of exposed populations is coupled with higher 40 

variability in particulate concentrations due to the large number and variety of sources (Jerrett et 41 

al. 2005; Karner et al. 2010; Eeftens et al. 2012). Thus, a sparse monitoring network can lead to 42 

an incomplete understanding of PM2.5 spatial variability and its subsequent health impacts. Recent 43 

advances in low-cost air quality sensing technologies have made it feasible for dense networks of 44 

monitors to be deployed in urban areas, providing a neighborhood-scale understanding of air 45 

pollution (Snyder et al. 2013). Several pilot programs for monitoring air quality at such high spatial 46 

resolution using these technologies are underway (Jiao et al. 2016; English et al. 2017; Williams 47 

et al. 2018; Zimmerman et al. 2018).  48 

Most low-cost particulate mass sensors make use of optical measurement techniques (Wang et al. 49 

2015; Kelly et al. 2017; Rai et al. 2017). It is well-known that these optical methods do not 50 

generally agree with measurements obtained from instruments operating on different principles 51 

(Watson et al. 1998; Wilson et al. 2002; Chow et al. 2008; Solomon and Sioutas 2008; Burkart et 52 

al. 2010). For example, work with low-cost optical PM2.5 sensors (Plantower model PMS3003) 53 

showed good correlation (r of 0.8) with a scattered light spectrometer versus low correlation (r of 54 

0.5) with a beta attenuation monitoring (BAM) instrument (Zheng et al. 2018). There are several 55 

reasons for these disagreements. First, for regulatory-grade instruments, particulate mass must be 56 

reported under specific temperature (20-23ºC) and humidity (30-40%) conditions (US EPA 57 

2016b), while most low-cost sensors report data at ambient conditions, leading to discrepancies 58 

with regulatory-grade instruments (including the BAM instruments used in this work, which are 59 

recognized as federal equivalent methods for PM2.5 mass measurement). As ambient humidity 60 

increases, hygroscopic growth of particles occurs, which increases their light scattering coefficient 61 

(Cabada et al. 2004), and therefore the mass reported by optical sensors. Field testing of low-cost 62 

optical PM2.5 sensors has shown the significant effect of ambient humidity on their measurements 63 

(Jayaratne et al. 2018; Zikova et al. 2017a, 2017b). A challenge is that hygroscopic growth is 64 

particle composition dependent (Petters and Kreidenweis 2007). Accounting for such growth is 65 

needed to reduce these humidity effects when comparing the optical sensor to reference monitors. 66 

Further, low-cost optical sensors are usually limited to measuring particles larger than 0.3 67 

micrometers (Koehler and Peters 2015; Zhou and Zheng 2016), and so will underreport PM2.5. 68 

This is corrected for during factory calibration by adjusting the instrument output to match that of 69 

a reference PM2.5 mass measurement of the same calibration “smoke” (Liu et al. 2017). Differences 70 

between particle size distribution and composition used for the factory calibration and the ambient 71 

aerosol during deployment can therefore cause further errors.  72 

Assessments of these low-cost sensors must also account for different use cases (Rai et al. 2017), 73 

for which different performance goals might be appropriate (e.g. Williams et al. 2014). We 74 
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consider two use cases in this work. First, sensors may be used, e.g. by community monitoring 75 

groups, to provide information on local air quality in real-time to support individual decisions, for 76 

example about where to go for a walk in a city to avoid highly polluted areas. In this case, exact 77 

quantitative results are less important than providing accurate indicators, e.g. that PM 78 

concentrations are currently higher in one part of a city than in another. Second, sensors may be 79 

used to determine long-term trends, e.g. for quantifying the exposure of a population or the impacts 80 

of a new pollution-mitigation policy. In this case, quantitatively accurate long-term performance 81 

is important. Knowledge of the capabilities and limitations of these low-cost sensors with respect 82 

to these use cases is especially relevant considering that products such as the PurpleAir sensor are 83 

already used by citizen scientists worldwide (www.purpleair.com). 84 

In this paper, we provide evaluations of the long-term performance of two types of relatively low-85 

cost (under $2000 for the NPM and $250 for the PurpleAir) PM2.5 sensors in field conditions in 86 

the city of Pittsburgh, Pennsylvania and its surroundings. The ambient hourly PM2.5 concentrations 87 

for this study are low (typically below 20 µg/m3) compared to previous field evaluations of these 88 

sensors (e.g. Kelly et al. 2017; Jayaratne et al. 2018). We also propose and evaluate both physics-89 

based and fully-empirical methods to correct for the influence of humidity and temperature on 90 

sensor readings, thereby making them more comparable to BAM instrument data. We have focused 91 

our attention on field studies due to the importance of assessing sensors in a similar environment 92 

to that in which they are to be used (White et al. 2012; Piedrahita et al. 2014). In Pittsburgh, like 93 

in other urban areas, PM2.5 is composed of regionally transported (aged) aerosol and fresh 94 

vehicular emissions (Tan et al. 2014). Additionally, a metallurgical coke producing facility is a 95 

major local point source. Hence, we develop a calibration equation through collocation with a 96 

reference monitor at an urban background site that represents aged background PM and a source-97 

oriented site near the major point source. We further evaluate these models across multiple seasons 98 

(January 2017 to May 2018) at both locations, as well as at a roadside location where vehicular 99 

contribution to PM2.5 below the sensor size cut-point should be highest, and a more rural location. 100 

2. Methods  101 

2.1. RAMP Sensor Package and Attached PM2.5 Sensors 102 

The Real-time Affordable Multi-Pollutant (RAMP) monitor is a low-cost sensing system 103 

collaboratively developed by SenSevere and the Center for Atmospheric Particle Studies at 104 

Carnegie Mellon University (Zimmerman et al. 2018). It incorporates five gas sensors, electronics, 105 

batteries, and wireless communication hardware. In addition to its internal sensors, the RAMP can 106 

be connected to external instruments for measuring PM2.5. One such instrument is the Met-One 107 

Neighborhood Particulate Monitor (NPM) sensor, which uses a forward light scattering laser. The 108 

unit is also equipped with an inlet heater and PM2.5 cyclone. Previous research has assessed the 109 

performance of two of these instruments over a two-month period in southern California, and 110 

found moderate correlations (r between 0.7 and 0.8) with regulatory-grade instruments (AQ-SPEC 111 



4 

 

2015). The NPM is available for about $2000 or about one tenth the price of regulatory-grade 112 

instruments measuring PM2.5. A total of 50 NPM units have been deployed alongside RAMPs. 113 

The PurpleAir PM2.5 monitor (PPA) is also deployed along with the RAMPs. This sensor 114 

incorporates a pair of Plantower PMS 5003 laser sensors, which provide measures of PM2.5 as well 115 

as of PM1.0 and PM10. Previous testing of three of these units over a two-month period in southern 116 

California showed good correlation (r above 0.9) with regulatory-grade instruments (AQ-SPEC 117 

2017). This sensor is available for about $250, or about one hundredth of the price of a regulatory-118 

grade instrument. Initial laboratory testing of a batch of 30 PurpleAir units found 7 to be defective; 119 

these defects were identified due to low correlations (r < 0.7) between the data provided by each 120 

units’ pair of Plantower sensors. These defective sensors are not considered in this paper. A total 121 

of 20 PurpleAir units have been deployed with RAMPs in the Pittsburgh area. 122 

2.2. Data Collection 123 

Sensor performance was assessed using data collected at four field sites - one corresponding to an 124 

“urban background”, one impacted by industrial emissions, one by vehicle emissions, and one 125 

more rural site - coincident with monitoring stations operated by the Allegheny County Health 126 

Department (ACHD) or Pennsylvania Department of Environmental Protection (DEP), at which 127 

BAM instruments provided hourly concentration measurements for comparison (Hacker 2017; 128 

McDonnell 2017). Although these instruments are not used for regulatory reporting, they are 129 

recognized federal equivalent methods and provide hourly data for Air Quality Index calculations. 130 

This section describes the two sites used for correction method development and long-term testing. 131 

Two additional regulatory sites which were used to test the correction methods are described in 132 

Section 3.3. 133 

The “Lincoln” site (AQS#42-003-7004, 40.308ºN by 79.869ºW) is a “source-dominated” site 134 

within 1 km of a facility producing coke for steel manufacturing that is the largest primary PM2.5 135 

point source in Allegheny county. This part of Allegheny County exceeded the annual and 24-hour 136 

Environmental Protection Agency (EPA) PM2.5 standards over 2015-2017 (ACHD 2017). This site 137 

is illustrative of a “fence line” monitoring application, where monitors are placed in proximity to 138 

a known emission source. Average PM2.5 concentration at this site (based on the BAM) was 14.5 139 

µg/m3 in 2017, with a one-hour maximum of 162 µg/m3. Here, one NPM sensor was operated for 140 

a total of 294 days from April 24, 2017 until the end of data collection for this study on June 1, 141 

2018. Additionally, between October 26, 2017 and February 12, 2018 (109 days), a total of 12 142 

NPM and 2 PurpleAir sensors were collocated at the site (although not all instruments were active 143 

for the entire period).  144 

The “Lawrenceville” deployment site (AQS#42-003-0008, 40.465ºN by 79.961ºW) is an urban 145 

background site located in an urban residential and commercial neighborhood, and part of the 146 

EPA’s NCore monitoring network (Hacker 2017). Average PM2.5 concentration at this site (based 147 

on the BAM) was 9.7 µg/m3 in 2017, with a maximum one-hour concentration of 67 µg/m3. At 148 
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this site, one NPM sensor was operated for a total of 380 days between January 13, 2017 and May 149 

6, 2018. In addition, a total of 25 NPM and 9 PurpleAir sensors were collocated at the site between 150 

March 30, 2018 and June 4, 2018 (66 days, although again, not all instruments were present for 151 

the entire period). Five NPM sensors were collocated at both Lincoln and Lawrenceville at 152 

different times; none of the PurpleAir sensors were collocated at both sites.  153 

Instruments at all sites were connected to RAMP monitors to allow for cellular data transmission. 154 

For NPM sensors, data associated with instrument error codes, as well as likely erroneously high 155 

readings (exceeding 10,000 µg/m3) were removed from the dataset. For PurpleAir sensors, 156 

readings from both internal Plantower sensors were averaged to determine the PurpleAir reading. 157 

Measurements from both types of sensors were down-averaged from their collection rate (roughly 158 

one measurement every 12 seconds) to an hourly rate to allow for comparison with the reference 159 

instruments. 160 

2.3. Physics-based (Hygroscopic Growth and Size Distribution) Correction Methods 161 

Figure 1 compares the as-reported data from the NPM and PurpleAir sensors to the BAM 162 

instrument at the Lawrenceville site. There are sizeable discrepancies (up to 20 µg/m3 in some 163 

cases) in the values, with humidity clearly having an effect. A method was sought to correct the 164 

readings of the low-cost sensors to better match those of the federal equivalent BAM instruments. 165 

As a starting point, the hygroscopic growth factor is the ratio of particulate mass at a given 166 

humidity and temperature to that at 22ºC and 35% relative humidity (the conditions at which 167 

regulatory data are reported), and is calculated as follows: 168 

 fRH(𝑇, 𝑅𝐻) = 1 + κbulk
𝑎𝑤(𝑇,𝑅𝐻)

1−𝑎𝑤(𝑇,𝑅𝐻)
  (1) 169 

The  hygroscopicity of bulk aerosol (κbulk) is evaluated considering seasonal changes in particle 170 

composition observed in Pittsburgh; these are accounted for by dividing the year into summer 171 

(May to September inclusive), winter (November to March inclusive), and other periods (with the 172 

“other” period using an average of the summer and winter compositions). Within each period, it is 173 

assumed that the aerosol composition and size distribution are constant over time and throughout 174 

the urban area. Seasonal aerosol compositions in the Pittsburgh area are obtained from Gu et al. 175 

(2018), and literature κ-values for the major non-refractory aerosol components sulfate, nitrate, 176 

ammonium, and organic matter are used (Cerully et al. 2015; Petters and Kreidenweis 2007); a 177 

sensitivity analysis for this compositional information is provided in the results (Section 3.2) and 178 

in the supplemental materials (Section S.2). Water activity is calculated as: 179 

 𝑎𝑤(𝑇, 𝑅𝐻) = 𝑅𝐻 exp (
4𝜎𝑤𝑀𝑤

𝜌𝑤𝑅𝑇𝐷p
)

−1

  (2) 180 

where 𝜎𝑤, 𝑀𝑤, and 𝜌𝑤 represent the surface tension, molecular weight and density of water, 181 

respectively; 𝑇 is the absolute temperature, 𝑅 is the ideal gas constant, 𝑅𝐻 is ambient relative 182 

humidity; and 𝐷p is the particle diameter (see Table S.1 for details). 183 
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 184 

Figure 1: Comparison of one-hour-average NPM (a) and PurpleAir (b) as-reported sensor 185 

readings to the BAM instrument during collocation at the Lawrenceville site. Each point 186 

indicates the median across all sensors of the given type present at the site. Colors indicate 187 

relative humidity at the time of the measurements. A breakdown of these results by relative 188 

humidity is provided in the supplemental materials (Table S.2). 189 

Correction of low-cost sensor readings using the hygroscopic growth factor alone was found to be 190 

insufficient (see supplemental materials Figure S.9), likely due to differences between the factory 191 

calibration aerosols and ambient aerosol in Pittbsurgh. Therefore, the hygroscopic growth 192 

correction was combined with an additional linear correction: 193 

 [corrected PM2.5] = 𝜃1 (
[PM2.5 as reported]

fRH(𝑇,𝑅𝐻)
) + 𝜃0  (3) 194 

The coefficients 𝜃0 and 𝜃1 were estimated using a combination of data collected at both the urban 195 

background Lawrenceville and source-dominated Lincoln sites from half of the sensors deployed 196 

to each site (the “training” set). Correction model performance was evaluated on the other half of 197 

sensors at these sites (the “testing” set), as well as at independent sites (see Section 3.3). 198 

Coefficients were set using typical linear regression techniques, minimizing the error between the 199 

corrected sensor measurements and the collocated BAM instrument at each site. These coefficients 200 

were estimated separately for the different time periods (summer, winter, other) for each of the 201 

low-cost sensor types (NPM, PurpleAir). This was necessary to account for the different responses 202 

of each type of sensor. For example, seasonal changes in particle size distributions lead to changes 203 

in the 𝜃0 term as more or less of the particulate matter mass falls below the 300nm detection size 204 

cut-point for optical sensors. 205 

2.4. Empirical Correction Methods 206 

The hygroscopic growth factor correction method described above is based on information about 207 

the specific aerosol chemical composition of the sensor deployment area, which may not be 208 

available at all locations. However, since factors such as temperature and relative humidity are 209 
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more readily available, other more generalizable, empirical correction equations were developed 210 

using these data. Dewpoint (𝐷𝑃) was considered as a factor related to condensation that might 211 

serve in place of the hygroscopic growth factor; temperature (𝑇) and relative humidity (𝑅𝐻) were 212 

also considered. Various combinations of the as-reported sensor readings and the above 213 

environmental parameters were fit using linear and quadratic regression models to correct the data. 214 

The forms of the empirical corrections were selected by trading off performance (across a range 215 

of concentrations experienced at both collocation sites) against functional complexity (details are 216 

provided in the supplemental materials, Section S.3). For NPM sensors, a quadratic function of the 217 

sensor reading, temperature, and humidity was selected: 218 

[corrected PM2.5]NPM = 𝛼0 + 𝛼1[PM2.5]NPM + 𝛼2𝑇 + 𝛼3𝑅𝐻 + 𝛼4[PM2.5]NPM
2 +219 

𝛼5[PM2.5]NPM𝑇 + 𝛼6[PM2.5]NPM𝑅𝐻 + 𝛼7𝑇2 + 𝛼8𝑇𝑅𝐻 + 𝛼9𝑅𝐻2  (4) 220 

The form selected for PurpleAir sensors was a two-piece linear function of the sensor reading, 221 

temperature, humidity, and dewpoint, with a threshold at 20 µg/m3: 222 

[corrected PM2.5]PPA = {
𝛽0 + 𝛽1[PM2.5]PPA + 𝛽2𝑇 + 𝛽3𝑅𝐻 + 𝛽4DP(𝑇, 𝑅𝐻) if [PM2.5]PPA > 20

μg
m3⁄  

𝛾0 +  𝛾1[PM2.5]PPA + 𝛾2𝑇 + 𝛾3𝑅𝐻 + 𝛾4DP(𝑇, 𝑅𝐻) if [PM2.5]PPA ≤ 20
μg

m3⁄  
  (5) 223 

Coefficients calibrated for these equations (using standard regression techniques) along with their 224 

uncertainties are provided in the supplemental materials (Table S.4). 225 

2.5. In-field Drift-adjustment 226 

A somewhat random, not-necessarily-monotonic fluctuation (e.g. a “random walk”) taking place 227 

over a period of weeks or months was observed in field-deployed NPM sensors when Eq. (4) is 228 

applied (see supplemental materials Figure S.5). The reason for this is likely due to seasonal 229 

changes in aerosol properties and/or sensor behaviors which are not captured by this equation. This 230 

was observed to affect monthly average PM2.5 readings by up to 4 µg/m3 at the Lawrenceville and 231 

Lincoln sites. Insufficient data were available to assess whether the same phenomenon occurs for 232 

PurpleAir sensors. We propose three methods to adjust for this drift in sensor response over the 233 

course of their field deployment. Note that here we use “drift” to refer to any changes in the 234 

baseline or “zero” reading of the sensor. 235 

The first adjustment method, known as the “Deployment Records” (DR) method, involves using a 236 

log of sensor deployment history to account for biases against a reference instrument. This method 237 

involves adjusting the measurements of all sensors to match that of one “benchmark” sensor during 238 

periods when sensors are collocated. The benchmark sensor is then collocated with a regulatory-239 

grade instrument while other sensors are deployed in the field. The relative bias of a deployed 240 

sensor versus the regulatory-grade instrument can then be estimated using the benchmark as an 241 

intermediary (i.e. the biases of all sensors versus the benchmark are assessed during their 242 

collocations, and the bias of the benchmark versus the regulatory-grade instrument is assessed 243 

during its collocation; the bias of any deployed sensor versus the regulatory-grade instrument is 244 
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then estimated as the sum of the above biases). The second method, known as the “Fifth 245 

Percentiles” (5P) method, involves computing the monthly 5th percentile of readings at a given 246 

deployment site, and then comparing to the 5th percentile recorded at the nearest regulatory 247 

monitoring station. Readings from the deployed sensor are then adjusted so that these percentiles 248 

match. This is done with the assumption that the 5th percentile represents a “background” level to 249 

which all sites in the region are subject. The third method is a variation of the 5P method, known 250 

as the “Average of Low readings” (AL) method, which uses the average of all readings in a month 251 

below 5 µg/m3 as the target value to be matched. All three methods rely on the availability of 252 

relatively frequent (e.g. hourly) data from regulatory-grade instruments, and the first method relies 253 

on historical collocation data with these instruments. Diagrams depicting each of these proposed 254 

methods are provided in the supplemental materials (Figure S.6). The latter two methods of 255 

rectifying drift by matching distribution parameters over time are similar to those proposed by 256 

Tsujita et al. (2005) and used by Moltchanov et al. (2015). 257 

2.6. Assessment metrics 258 

To evaluate the performance of a sensor as compared to a reference (typically a regulatory-grade 259 

instrument), the bias, mean absolute error, and correlation coefficient (r) statistics were used 260 

(details are provided in the supplemental materials, Section S.5). Performance of the instruments 261 

was also assessed from a classification perspective, using the EPA’s National Ambient Air Quality 262 

Standards 24-hour standard of 35 µg/m3 (www.epa.gov/criteria-air-pollutants/naaqs-table) as a 263 

representative threshold, by assessing how often the sensor agreed with a reference instrument as 264 

to whether this concentration was surpassed. This determination was made on an hourly basis for 265 

this assessment, while the regulation cited above applies to daily averages. This comparison was 266 

therefore conservative, and we would expect better performance for daily averages based on the 267 

results of Section 3.6. Classification precision indicates the fraction of values of concentration 𝑐 268 

above threshold 𝜏 detected by the sensor which were also detected by the reference: 269 

 classification precision =  
∑ 𝕀(𝑐𝑖>𝜏)𝕀(𝑐̂𝑖>𝜏)𝑛

𝑖=1

∑ 𝕀(𝑐𝑖>𝜏)𝑛
𝑖=1

∙ 100%  (6) 270 

where 𝑐𝑖 is the reading of the sensor and �̂�𝑖 the reading of the reference instrument at time 𝑖 of 𝑛, 271 

and 𝕀 is the indicator function, taking on value 1 when its argument is true and 0 otherwise. 272 

Classification recall is the fraction of instances detected by the reference instrument which were 273 

also detected by the sensor: 274 

 classification recall =  
∑ 𝕀(𝑐𝑖>𝜏)𝕀(𝑐̂𝑖>𝜏)𝑛

𝑖=1

∑ 𝕀(𝑐̂𝑖>𝜏)𝑛
𝑖=1

∙ 100%  (7) 275 

Therefore, classification precision describes how often an event detected by the sensor actually 276 

occurred (assuming the reference instrument reading was the “true” concentration) while recall 277 

describes the fraction of actual events which were detected by the sensor. Values of these metrics 278 

close to 100% indicate better performance. 279 
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3. Results 280 

In this section, first, the mutual consistency of the as-reported data from the low-cost PM sensors 281 

is quantified, to address how comparisons might be made without applying corrections. Second, 282 

the quantitative performance of the proposed correction methods is assessed for the short-term use 283 

case envisioned for these sensors. Finally, the long-term performance of these sensors is analyzed, 284 

including contributions of the proposed drift-adjustment methods. 285 

3.1. Consistency between Sensors 286 

To determine the consistency between sensors, pairwise comparisons of 1-hour-averaged data 287 

were made among NPM and PurpleAir sensors (i.e. NPM with NPM and PurpleAir with 288 

PurpleAir) collocated at either the Lawrenceville of Lincoln site during the same period. At 289 

Lawrenceville, during the RAMP collocations, temperature varied between -20 and +31°C and 290 

relative humidity varied from 22% to 97%; at Lincoln, temperature varied from -3 to +43°C and 291 

humidity varied between 17% and 97% (as measured by the RAMPs’ onboard sensors). Figure 2 292 

presents the results of these inter-comparisons; only results for sensors collocated for at least 3 293 

days (36 1-hour averages) are presented. Overall, mutual correlations were strong (typically r >294 

0.9) and were higher at the Lincoln site likely due to the wider range of concentrations. Absolute 295 

differences in as-reported readings were typically about 2 µg/m3 or less, which includes systematic 296 

biases between sensors generally on the order of ±1 µg/m3. This is similar to prior results for 297 

Alphasense OPC-N2 optical PM2.5 sensors, which are more than twice the price of PurpleAir units 298 

(Crilley et al. 2018). 299 
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 300 

Figure 2: Inter-comparison of as-reported one-hour-average data between sensors during 301 

collocation periods at both sites. In the boxplots, circles with dots denote the median, thick bars 302 

denote the interquartile range, and thin bars denote the 95% confidence range. Black boxplots 303 

indicate metric ranges for pairs of NPM sensors, and purple boxplots indicate ranges for pairs of 304 

PurpleAir sensors. This represents 114 NPM pairs at Lawrenceville, 66 NPM pairs at Lincoln, 305 

16 PurpleAir pairs at Lawrenceville and 1 PurpleAir pair at Lincoln. For reference, the ranges of 306 

concentrations measured by BAM instruments at the sites during the same time are depicted in 307 

panel d. 308 

Figure 3 compares hourly averages of as-reported data from NPM sensors at Lawrenceville to 309 

those collected by PurpleAir sensors at Lawrenceville as a function of humidity (the median 310 

readings of all sensors active at the site at the same time are shown). At low humidity, PurpleAir 311 

readings were about twice that of the NPM, while at high humidity the ratio of readings approached 312 

one; comparisons made between raw readings of the two sensor types would therefore be heavily 313 

humidity-dependent. There are several likely causes for these differences. First, the NPM 314 

possesses an inlet heater with a 4-second residence time which activates when relative humidity 315 

exceeds 40%. However, this residence time may not be sufficient to totally remove humidity 316 

effects on the NPM. Second, these instruments are calibrated differently. The NPM is calibrated 317 

with 0.6µm polystyrene latex spheres (Met One 2018), while PurpleAir Plantowers are calibrated 318 

with ambient aerosol across several cities in China (Wang 2019). They therefore respond 319 

differently when exposed to a common aerosol which differs from their calibration aerosols. 320 
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 321 

Figure 3: Comparison between medians of as-reported one-hour-average data of 25 NPM and 9 322 

PurpleAir sensors during collocation at the Lawrenceville site. Colors indicate relative humidity 323 

at the time of the measurements. 324 

3.2. Correction of Low-Cost Sensors towards a Federal Equivalent Method 325 

Figure 4 plots median hourly-average readings from NPM and PurpleAir sensors collocated at the 326 

Lawrenceville site corrected using Eq. (3) against the ACHD regulatory-grade (BAM) instrument 327 

readings. This correction decreased MAE by about 40% for both NPM and PurpleAir sensors with 328 

respect to their as-reported values and reduced bias significantly, but there was still noticeable 329 

measurement noise (r ~0.75) about the identity line. 330 
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 331 

Figure 4: Comparison of one-hour-average NPM (a) and PurpleAir (b) sensor readings to the 332 

BAM instrument during collocation at the Lawrenceville site after correction using Eq. (3), with 333 

appropriate coefficients for NPM and PurpleAir. Each point indicates the median across all 334 

sensors of the given type present at the site (including both “training” and “testing” sensors). 335 

Colors indicate relative humidity at the time of the measurements. A breakdown of these results 336 

by relative humidity is provided in the supplemental materials (Table S.3). 337 

Figure 5 assesses the performance of the designated “testing” set of low-cost sensors deployed to 338 

the Lawrenceville and Lincoln sites during the March to June (at Lawrenceville) and October to 339 

February (at Lincoln) collocation periods. The figure compares as-reported data to data corrected 340 

using the hygroscopic-growth-based approach of Eq. (3) (with appropriate coefficients for NPM 341 

or PurpleAir sensors) and data corrected using the fully-empirical approaches of Eq. (4) for NPM 342 

or Eq. (5) for PurpleAir. In all cases hourly-averaged data were used. In terms of correlation 343 

(Figure 5a), no improvement was made for PurpleAir sensors, while only a modest improvement 344 

resulted from correction of the NPM sensors. In terms of MAE (Figure 5b) and bias (Figure 5c), 345 

however, both correction approaches resulted in noticeable improvements. For NPM sensors, both 346 

the physics-based Eq. (3) and fully-empirical Eq. (4) gave comparable performance. For PurpleAir 347 

sensors, the fully-empirical approach of Eq. (5) provided a smaller spread of MAE and bias results 348 

as compared to Eq. (3), while the median MAE of both approaches were almost the same, and the 349 

median bias of Eq. (5)  was slightly worse. Overall both correction approaches improved upon the 350 

as-reported data and there was no significant difference between their performance. 351 
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 352 

Figure 5: Performance metrics of one-hour-average as-reported and corrected sensor data 353 

compared to BAM instruments during collocation at both the Lawrenceville and Lincoln sites. 354 

Results shown relate to a total of 17 NPM and 5 PurpleAir sensors of the “testing” set. 355 

Corrections are performed using either the approach of Eq. (3), with appropriate coefficients for 356 

NPM or PurpleAir, or the approaches of Eq. (4) for NPM and Eq. (5) for PurpleAir. 357 

Table 1 presents the calibrated coefficients for the approach of Eq. (3) for both NPM and PurpleAir 358 

sensors during the summer, winter, and for other periods (calibrated coefficients for Eqs. (4) and 359 

(5) are provided in the supplemental materials, Table S.4). Note that for both NPM and PurpleAir 360 

sensors, the value of 𝜃0 (the linear intercept term) was larger in summer than in winter. This could 361 

be explained by the fact that during summertime in Pittsburgh, as in most urban areas (Asmi et al. 362 

2011), particles smaller than 300 nm optical diameter are a larger fraction of PM2.5 (see the 363 

supplemental materials Figure S.8), necessitating a larger correction. For 𝜃1 (the linear slope term), 364 

while the values for summer and winter were the same for NPM sensors, for PurpleAir sensors the 365 

value was higher in the winter. However, the hygroscopic growth factor (for the same temperature 366 

and relative humidity) was also higher in winter, as winter-time aerosol has a larger contribution 367 

from more hygroscopic inorganic aerosol. Thus, the net result was a lower impact of seasonal 368 

changes in the hygroscopic growth factor on the PurpleAir readings, indicating that the PurpleAir 369 

sensor may be less susceptible to humidity-driven changes. The internal structure of the PurpleAir 370 

unit may contribute to this; the plastic shell enclosing the Plantower sensors and associated 371 

electronic circuits can trap heat inside the unit, leading to lower relative humidity within the device. 372 

During tests at the Lawrenceville site, 𝑅𝐻 inside the PurpleAir was found to be 9.7 percentage 373 

points lower on average than outside, while  𝑇 was 2.7ºC higher. 374 
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Table 1: Calibrated coefficients for Eq. (3). Values following “±” represent the standard 375 

deviations in the coefficient estimates. 376 

 Met-One NPM PurpleAir PPA 

𝜃0 

Summer 5.28 ± 0.09 μg
m3⁄      5.4 ± 0.4 μg

m3⁄  

Winter 2.03 ± 0.08 μg
m3⁄  −0.3 ± 0.2 μg

m3⁄  

Other 1.68 ± 0.13 μg
m3⁄      3.7 ± 0.1 μg

m3⁄  

𝜃1 

Summer 1.50 ± 0.01  0.62 ± 0.03  

Winter 1.50 ± 0.01  1.25 ± 0.01  

Other 1.76 ± 0.02  0.83 ± 0.01  

 377 

3.3. Performance Assessment at Other Regulatory Sites 378 

To further assess the performance of these sensor corrections at locations independent of where 379 

they were developed, several sensors were tested at two additional sites. The “Parkway East” site 380 

(AQS#42-003-1376, 40.437ºN by 79.864ºW) represents a roadside location (Hacker 2017), and 381 

thus may have a different, vehicular traffic-influenced particle composition and size distribution 382 

than either the urban background or coke oven-impacted sites at which the corrections were 383 

developed. Between September 6 and 27, 2018 (21 days), two PurpleAir sensors were collocated 384 

at this site. Data from these sensors were corrected using Eq. (3). These provided comparable 385 

results to testing at the Lincoln and Lawrenceville sites (median r of 0.71, median MAE of 2.7 386 

µg/m3, median bias of 0.36 µg/m3). For reference, the average concentration at this site during the 387 

same time was 10.6 µg/m3. 388 

The “DEP Johnstown” site (AQS#42-021-0011, 40.310ºN by 78.915ºW) is in Cambria county, 389 

about 90 kilometers east of Pittsburgh (McDonnell 2017). While possessing a similar overall 390 

climate to Pittsburgh, it represents a more rural site. From April 3 to 6, 2017 (3 days), a single 391 

NPM sensor was deployed at this site. Data from this sensor was corrected using Eq. (3), and gave 392 

performance within the ranges observed at the other sites (r of 0.62, MAE of 1.9 µg/m3, bias of -393 

0.99 µg/m3). For reference, the average concentration at this site during the same time was 6.2 394 

µg/m3. 395 

3.4. Sensitivity Analysis to Aerosol Composition 396 

While the hygroscopic growth correction method discussed earlier used aerosol composition data 397 

from Aerosol Mass Spectrometer (AMS) measurements, not all locations have such data. 398 

However, aerosol composition data is also collected on a regular basis (one 24-hour sample every 399 

three to six days) by regulatory agencies such as the US EPA, and the data are publicly available 400 

(https://aqs.epa.gov/aqsweb/airdata/download_files.html). For example, aerosol composition data 401 

from Washington county, a site 35 kilometers from Pittsburgh, was used as a proxy for Pittsburgh 402 

aerosol composition; this resulted in a difference of less than 1% in the corrected PM2.5 403 

concentration values. A sensitivity analysis for the hygroscopic-growth-based correction approach 404 

https://aqs.epa.gov/aqsweb/airdata/download_files.html
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with respect to aerosol composition was also performed using a range of plausible compositions 405 

from the EPA Chemical Speciation Network (EPA Air Data). Full details are provided in the 406 

supplemental materials (Section S.2). Briefly, the organic component fraction varied from 0.3 to 407 

1, the sulfate component varied from 0 to 0.8, nitrate varied from 0 to 0.8, and ammonium varied 408 

from 0 to 0.3. Overall, using this range of alternate chemical composition information in Eq. (3) 409 

changed the resulting corrected PM2.5 concentrations by up to 10% for typical cases, and up to 410 

25% in extreme cases (see Figure S.4). Thus, for US sites where no local composition information 411 

are available, publicly-available information from the nearest site in the EPA network can be used. 412 

A similar approach may be possible for other countries. 413 

3.5. Short-Term Performance 414 

The US EPA has a short-term standard for PM2.5 based on 24-hour average concentrations, set at 415 

35 µg/m3 (US EPA 2016a). We use this concentration level to test the performance of these low-416 

cost sensors under a short-term use case, where they might be used to alert citizens to potentially 417 

unhealthy outdoor conditions. Although the EPA standard applies to a 24-hour average 418 

concentration, we test the performance of the low-cost sensors using one-hour averages in order 419 

to better mimic a near real-time alert scenario. This test is performed for the Lincoln site only since 420 

hourly concentrations at Lawrenceville surpassed the threshold less than 1% of the time. True 421 

positives occurred when both the NPM sensor (corrected using Eq. (3)) and BAM detected an 422 

event (i.e. an hour when the average PM2.5 concentration was higher than 35 µg/m3); false positives 423 

were when only the NPM measured the event, and false negatives when the NPM failed to detect 424 

an event seen by the BAM. The classification precision (Eq. (6)) of the sensor was 85% and its 425 

classification recall (Eq. (7)) was 71% at the Lincoln site; for comparison, these values were 61% 426 

and 78% respectively for the un-corrected, as-reported NPM data. Of the misclassifications, 15% 427 

occurred when the BAM measured average concentrations between 30 and 40 µg/m3; the rest 428 

represented larger discrepancies between the instruments. A one hour “grace period” was also 429 

considered, i.e., if an event detection by one instrument leads or trails the other by up to an hour, 430 

this was still counted as a true positive. With this grace period, the classification precision was 431 

90% and classification recall was 97%, versus 73% and 97% respectively for the uncorrected data. 432 

A graphical presentation of the results is provided in the supplemental materials (Figure S.15). 433 

3.6. Long-Term Performance  434 

Long-term assessment is necessary to categorize bias and assess data quality after extensive field 435 

use of sensors. Additionally, long-term deployments can be used to generate data for 436 

epidemiological studies, to evaluate different air quality models, and for verification of satellite 437 

retrievals, which previously relied on sparse networks of expensive reference monitors. Previous 438 

studies of lower-cost optical particle counters operating for up to four months report no evidence 439 

of significant drift (Crilley et al. 2018). The long-term performance of NPM sensors was assessed 440 

using data collected by the two sensors deployed at the Lawrenceville and Lincoln sites for a much 441 

more extended period (e.g. more than a year of data at Lawrenceville collected over a 16-month 442 
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span). First, data corrected using Eq. (4) were used to assess the in-field drift-adjustment methods 443 

proposed in Section 2.5 to eliminate the “random walk” behavior observed when this correction 444 

approach was used over long periods. Based on these results, the “average of low readings” method 445 

worked best, reducing both the median bias and spread in biases at the Lawrenceville site. 446 

However, there were no clear improvements for these metrics at the Lincoln site (see supplemental 447 

materials Figure S.7 for details). 448 

Figure 6 plots the MAE of the corrected sensor data with and without drift-adjustment (using the 449 

AL method) compared to the associated regulatory-grade instrument, as a function of averaging 450 

period. For weekly averages error was below about 2 µg/m3. For annual averages, errors were 451 

about or below 1 µg/m3, which is about 10% of the annual average concentrations for Pittsburgh. 452 

Drift-adjustment of measurements corrected with the fully-empirical Eq. (4) improved the 453 

performance at the Lawrenceville site (where concentrations are typically lower) to exceed that of 454 

Eq. (3); here, the errors fall below 1 µg/m3 for quarterly or seasonal averages. At the Lincoln site 455 

the drift-adjustment method tended to do nothing, or to slightly increase errors; this indicates that 456 

drift adjustment may not be required (or even suitable) for all locations or all sensors.  457 

   458 

Figure 6: Mean absolute error in PM2.5 measurements for two NPM sensors during long-term 459 

deployments as a function of averaging period (note the differing horizontal axis scale on either 460 

side of the vertical black line). Solid lines represent measurements corrected using Eq. (3); 461 

dotted lines indicate measures corrected using Eq. (4) but not drift-adjusted; dashed lines 462 
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indicate measures corrected using Eq. (4) and drift-adjusted using the AL method. Points along 463 

the lines indicate which specific averaging times were evaluated. 464 

4. Discussion 465 

Testing of a relatively large number of NPM (25 sensors at the Lawrenceville site) and PurpleAir 466 

(9 sensors at the Lawrenceville site) low-cost PM2.5 sensors showed high mutual consistency 467 

between the sensors, with mean inter-unit disagreement typically below 2.5 µg/m3 and correlation 468 

typically higher than 0.9. Systematic biases between instruments appear to account for the largest 469 

fraction of the absolute differences; such biases may be assessed before and after field deployment 470 

using collocations, but this may not fully account for in-field differences due to changes in aerosol 471 

composition and size distributions over time (see supplemental materials Section S.2). 472 

The first proposed correction equation was designed to account for two of the main factors 473 

contributing to differences between optical measurements and the BAM instrument readings. First, 474 

a hygroscopic growth factor was used to account for the increase in measured particle mass due to 475 

ambient humidity. Second, a linear correction was applied to account for mismatches between the 476 

size distribution and chemical composition of the factory calibration aerosol and the (ambient) 477 

aerosol to be measured. We also evaluated alternative empirical correction equations which did 478 

not rely on the assumptions necessary for estimating hygroscopic growth. For both NPM and 479 

PurpleAir sensors, both correction approaches achieve similar performance, although even 480 

following correction, relatively large differences in hourly averages (MAE of 3 to 4 µg/m3) were 481 

observed with respect to the BAM regulatory-grade instruments. This lack of consistency with 482 

BAM instruments has also been observed previously (e.g. Zheng et al. 2018) and may not be 483 

reconcilable with low-cost optical sensors. However, as data were averaged over longer periods, 484 

accuracy was improved, such that longer-term (1 year or even seasonal) averages were likely to 485 

have errors below 1 µg/m3 (or about 10% of long-term average concentrations). 486 

The proposed correction approaches handle aerosol chemical composition in different ways. The 487 

empirical correction approach is calibrated based on an (implicitly assumed) long-term average 488 

composition. Thus, when the true composition is close to this average, the empirical method is 489 

likely to perform well. When the composition is closer to the seasonal averages than to the long-490 

term average, the hygroscopic-growth-based correction approach (which explicitly uses seasonal 491 

average composition information) is likely to perform better. When the composition differs from 492 

both the seasonal and long-term average compositions, neither approach will perform as well. For 493 

the hygroscopic-growth-based correction approach, sensitivity of the results to compositional 494 

variations was analyzed and found to only have a small effect in most cases (see supplemental 495 

materials Section S.2). For the empirical approach, differing performance due to varying chemical 496 

composition is not evaluated explicitly; however, its contribution is part of the overall error 497 

associated with this method, assessed both in the short-term (contributing to the MAE and bias 498 

noted in Figure 5) and in the long-term (contributing to the monthly bias noted for the “no drift 499 

adjustment” method). 500 
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The efficacy of several proposed in-field drift-adjustment methods were also evaluated, although 501 

these methods were only seen to have noticeable benefits for one of two sensors on which they 502 

were tested, and so their utility is still unclear. The “average of low readings” (AL) method 503 

adjusted for drift in the NPM sensor deployed at the Lawrenceville site, improving its performance 504 

(see Figure 6). The same method made little impact for the Lincoln site. This could indicate either 505 

that the Lincoln sensor did not experience significant drift, and therefore was not in need of 506 

adjustments, or that such drift was not adjusted for by the method. Overall, while in-field sensor 507 

drift should be corrected for, more research and in-field verification of drift-adjustment methods 508 

are needed. 509 

The NPM (with or without correction) detected 97% of occurrences when the BAM recorded PM2.5 510 

higher than 35 µg/m3. However, in the uncorrected low-cost sensor data, 27% of values above 35 511 

µg/m3 were not observed by the BAM; the corrections presented here (Eq. (3)), which account for 512 

aerosol hygroscopic growth, reduced this error to 10%. Additionally, short-term performance of 513 

the sensors after corrections met EPA recommendations for educational or informational 514 

monitoring activities (Williams et al. 2014) (see supplemental materials, Figure S.13). Together, 515 

these results indicate the potential for these sensors (after accounting for humidity effects) to be 516 

used for assessing relative pollution levels in different neighborhoods.  517 

The high level of mutual consistency and ability (with suitable corrections) to provide accurate 518 

long-term averages makes these low-cost sensors useful for large-scale mapping campaigns to 519 

determine long-term spatial patterns and temporal trends in PM2.5. For real-time monitoring, 520 

although these sensors can detect hourly “spikes” reasonably well, concentration values are only 521 

accurate within about ±4 µg/m3. Nevertheless, this is sufficient for qualitative indications of 522 

relative short-term air quality, as indicated by the high concentration detection performance 523 

(Section 3.5). The small size and ease of deployment of these units make them well suited to urban 524 

monitoring. The low-cost (sub-$250 each) PurpleAir sensors also incorporate a pair of optical 525 

sensors, allowing for internal self-consistency checks to flag possible erroneous data. The cyclone 526 

and inlet heater of the (sub-$2,000 each) NPM sensors can protect the units from excessive dust 527 

and humidity (to which PurpleAir sensors, which lack these features, may be more susceptible 528 

during longer deployments). Finally, we note that these results are determined for the specific 529 

environment of Pittsburgh, Pennsylvania; however, they can be generalized to other areas in 530 

developed or OECD countries which are characterized by annual PM2.5 mass concentrations less 531 

than 20 µg/m3 and across both urban background (e.g. Lawrenceville) and source-impacted (e.g. 532 

Lincoln and Parkway East) sites. Especially for the Plantower (PurpleAir) sensor, for which a two-533 

part correction equation was found optimal even within the range of PM2.5 concentrations observed 534 

in Pittsburgh, the response may be different at higher concentrations found in developing countries 535 

like India or China. Similar to low-cost electrochemical gas sensors, which are designed to operate 536 

at higher concentrations and therefore require specialized calibrations for lower ambient 537 

concentrations (e.g. Malings et al. 2019), these low-cost PM2.5 sensor may operate well using 538 

factory calibrations in high-concentration environments, but require additional corrections such as 539 



19 

 

those presented here at lower ambient concentrations. Field tests of these instruments and 540 

calibration techniques at sites throughout the USA and around the world is the subject of ongoing 541 

work (e.g. Subramanian et al. 2018) and beyond the scope of this manuscript. 542 

Considering future low-cost PM2.5 sensor deployments, the use of correction Eq. (3) is 543 

recommended where information on particle composition is available (whether for the area in 544 

question of for a nearby area with similar characteristics); otherwise, Eqs. (4) or (5) can be used. 545 

The coefficients presented here for those corrections can be used as a starting point. Where 546 

possible, however, new coefficients should be determined via collocation with regulatory-grade 547 

instruments to account for local conditions, and depending on local conditions, further drift 548 

adjustments using the techniques presented here (or others) may be necessary.  549 
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S.1. RAMP and PM Sensor Picture 21 

 22 

Figure S.1: Several RAMP monitors (red boxes) with connected Met-One NPM (yellow box) 23 

and PurpleAir (purple box) PM2.5 sensors. 24 

S.2. Correction Methods – Hygroscopic Growth Factor Computation 25 

This hygroscopic growth factor is computed as:  26 

 fRH(𝑇, 𝑅𝐻) = 1 + κbulk
𝑎𝑤(𝑇,𝑅𝐻)

1−𝑎𝑤(𝑇,𝑅𝐻)
  (S.1) 27 

where: 28 

 𝑎𝑤(𝑇, 𝑅𝐻) = 𝑅𝐻 exp (
4𝜎𝑤𝑀𝑤

𝜌𝑤𝑅𝑇𝐷p
)

−1

  (S.2) 29 

κbulk is the hygroscopicity of bulk aerosol; κbulk = ∑ 𝑥𝑖𝜅𝑖𝑖  where. 𝑥𝑖  and 𝜅𝑖 are the volume 30 

fraction hygroscopocity parameters of the 𝑖th component comprising the particle. Organic, 31 

sulfate, nitrate and ammonium are assumed as the main components comprising the particle. The 32 

fractional contributions of these chemical components to PM2.5 during summer, winter, and as an 33 

annual average (applied to other periods) are obtained from recent AMS measurements in 34 

Pittsburgh (Gu et al. 2018) and their hygroscopocity parameters are adopted from literature 35 

(Cerully et al. 2015; Petters and Kreidenweis 2007). 𝑎𝑤 is the water activity parameter, estimated 36 

using Eq. (S.2), where 𝜎𝑤, 𝑀𝑤, and 𝜌𝑤 represent the surface tension, molecular weight and 37 

density of water, respectively; 𝑇 is the absolute temperature, 𝑅 is the ideal gas constant, 𝑅𝐻 is 38 

ambient relative humidity; 𝐷p is the particle diameter, adopted as volume median diameter from 39 

long-term size distribution measurements using SMPS in Pittsburgh. Table S.1 lists different 40 

parameter values used in hygroscopic growth factor calculation.  41 
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Table S.1: Parameters used in hygroscopic growth factor calculation 42 

Parameter Value Unit Source 

 Summer Winter Other   

𝜅OA 0.15 0.15 0.15 - (Cerully et al. 2015) 

𝜅𝑆𝑂4 0.5 0.5 0.5 - (Petters and Kreidenweis 2007) 

𝜅𝑁𝑂3 0.6 0.6 0.6 - (Petters and Kreidenweis 2007) 

𝜅𝑁𝐻4 0.5 0.5 0.5 - (Petters and Kreidenweis 2007) 

𝑥𝑂𝐴 0.64 0.41 0.53 - (Gu et al. 2018) 

𝑥𝑆𝑂4
 0.24 0.16 0.20 - (Gu et al. 2018) 

𝑥𝑁𝑂3
 0.04 0.29 0.165 - (Gu et al. 2018) 

𝑥𝑁𝐻4
 0.08 0.15 0.115 - (Gu et al. 2018) 

κbulk 0.26 0.34 0.30 -  

𝜎𝑤 0.072 0.072 0.072 N/m  

𝑀𝑤 0.018 0.018 0.018 kg/mol  

𝜌𝑤 1000 1000 1000 kg/m3  

𝑅 8.314 8.314 8.314 J/mol K  

𝐷p 200 200 200 nm  

 43 

 44 

Figure S.2: Example of how the hygroscopic growth factor varies with humidity in summer, 45 

winter, and otherwise. 46 

To examine the sensitivity of the hygroscopic growth factor to different aerosol compositions, a 47 

sensitivity analysis was conducted for differing aerosol compositions resulting in different κbulk 48 

values. Using data from the EPA Chemical Speciation Network for 2018 (available online at 49 

https://aqs.epa.gov/aqsweb/airdata/download_files.html), the fractional composition of PM2.5 as 50 

carbonaceous matter, sulfate, nitrate, and ammonium were determined, and annual average bulk 51 

hygroscopicity factors were computed for each of 139 sites where these data are available. 52 

Carbonaceous mass was computed using a sum of elemental carbon and organic mass (OM, 53 

calculated as organic carbon multiplied by 1.8) (Turpin and Lim 2001). The κ value for EC was 54 

assumed the same as for OM; EC was typically from 8% to 18% of OM, so errors due to this 55 
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assumption should be small. Histograms for the fractional composition of these components 56 

across network sites are presented in Figure S.3.  57 

  58 

Figure S.3: Histograms representing the ranges in fractional compositions for carbonaceous, 59 

sulfate, nitrate, and ammonium components of PM2.5 measured at 139 sites in the US EPA 60 

Chemical Speciation Network.  61 

Figure S.4 presents the results as a function of relative humidity (in five percentage point 62 

increments), for a base concentration of 10 µg/m3 at an ambient temperature of 22°C. The 63 

boxplots indicate the spread (across the speciation network sites) of the percent difference 64 

between PM readings corrected using each of the 139 speciation sites and PM readings corrected 65 

using the Pittsburgh values of κbulk, as determined from the AMS data and presented in Table 66 

S.1. The solid black line indicates results when using only the nearest speciation site to 67 

Pittsburgh outside of Allegheny county (in Washington county, about 35 km away). Overall, the 68 

failure to use an appropriate local κbulk factor typically (i.e. for the interquartile range of site 69 

compositions) causes less than 10% errors and may lead to up to 25% errors in extreme cases. 70 

However, using a nearby local factor, errors can be reduced below 1%. Therefore, it is 71 

recommended to use speciation information from the closest available station if specific local 72 

information is not available. It should further be noted that these results all employ the same 73 

linear correction coefficients from Eq. (3) as were determined for Pittsburgh, as presented in 74 

Table 1; if local collocations are performed to determine appropriate coefficients for each area, 75 

the resulting errors are likely to be further reduced or eliminated. Furthermore, while PM 76 

composition and size distribution at a given location may change significantly from day-to-day 77 

(Saha et al. 2019), the settings used in the proposed corrections reflect long-term averages. Thus, 78 

while they cannot capture such short-term fluctuations (as is reflected by the residual uncertainty 79 

in the presented results), they provide more robust performance in the long-term without the 80 
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need for simultaneous composition and size distribution information to be collected alongside 81 

low-cost sensor data. 82 

 83 

Figure S.4: Sensitivity analysis of hygroscopic growth rate corrections. Boxplots indicate the 84 

range of percent differences between corrections performed using each of the chemical 85 

compositions measured at sites in the EPA Chemical Speciation Network and corrections 86 

performed using the Pittsburgh chemical composition (as described above). Results are binned 87 

by relative humidity. The solid red line indicates the percent differences from using chemical 88 

composition data at the nearest non-Pittsburgh site. 89 

 90 

Several explanatory factors were considered for the empirical correction method. Dewpoint 𝐷𝑃 91 

was considered as a factor related to condensation that might serve as a proxy for the 92 

hygroscopic growth factor which is independent of aerosol composition. Furthermore, humidity 93 

is known to affect the performance of optical particle sensors directly (e.g. Jayaratne et al. 2018), 94 

and so relative humidity 𝑅𝐻 was included as a factor. Finally, temperature 𝑇 was included as a 95 
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factor since it has been observed to affect the performance of optical sensor components 96 

(Johnson et al. 2016; Jayaratne et al. 2018; Zheng et al. 2018).  97 

Various combinations of the as-reported sensor readings and the above inputs into various 98 

functional forms and with different application thresholds were applied to generate correction 99 

equations. Two functional forms were considered: linear and quadratic regression models. 100 

Thresholds were considered to define different subsets of the domain over which different 101 

functional parameters could be applied, allowing for piecewise-linear or piecewise-quadratic 102 

functions. Models without thresholds were considered, as well as models with single or multiple 103 

threshold values chosen from among 5, 10, 15, 20, 30, 40, and 50 µg/m3 (as determined from the 104 

raw sensor reading). For reference, ambient concentrations in Pittsburgh typically range from 3 105 

to 20 µg/m3. 106 

Models were calibrated using a combination of data collected at both the Lawrenceville and 107 

Lincoln sites from half of the sensors deployed to each site (the “training” set); model 108 

performance was evaluated on the other half of sensors at these sites (the “testing” set). 109 

Performance metrics assessed for the various models are included as supplementary data. The 110 

performance of each correction model on the test sensor set was scored using a heuristic 111 

combining various performance metrics (bias, mean absolute error, r, and threshold classification 112 

score) across a range of concentrations experienced at both collocation sites and penalizing the 113 

complexity of the model (and therefore its propensity to overfit to training data). The format of 114 

this scoring system was inspired by the “Eureqa” equation discovery system of Schmidt and 115 

Lipson (2009), with modifications for the specific context of this problem (see the supplementary 116 

data for the resulting metrics). The resulting metrics are available in a table attached to the 117 

supplementary materials but separate from this document.For selecting a final correction method 118 

for each type of sensor, performance across a range of concentrations experienced at both 119 

collocation sites was traded off against the complexity of the model (and therefore its propensity 120 

to overfit to training data).  121 
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S.5.S.4. Drift-Adjustment Methods 122 

 123 

Figure S.53: Illustration of observed NPM sensor drift at the Lincoln and Lawrenceville sites. 124 

Drift is depicted as the difference in monthly average readings of the NPM sensor, corrected 125 

using Eq. (4), versus the collocated regulatory-grade instrument at each site. 126 

 127 

Figure S.64: Diagrams of the three proposed drift-adjustment methods. 128 
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Note that in the Average of Low Readings method, if no readings within a month are below 5 129 

micrograms per cubic meter, the minimum reading for that month is instead used as the basis for 130 

the adjustment. 131 

 132 

Figure S.7: Performance of various drift-adjustment methods in reducing the bias in monthly 133 

averages; NA – no adjustment applied; DR – drift-adjusted using deployment records; 5P – 134 

drift-adjusted using percentiles of nearest reference site; AL – drift-adjusted using averages of 135 

low readings at nearest reference site. Performance is determined separately for the NPM 136 

instruments deployed for extended periods at the Lawrenceville (blue) and Lincoln (red) sites. 137 

Corrections are performed using Eq. (4). 138 

Figure S.7 shows the spread in monthly biases (difference between the monthly average readings 139 

of the corrected sensors and the BAM instruments) for both long-term collocation sites, both 140 

without drift-adjustment and with the three proposed drift-adjustment methods. Note that these 141 

biases are for the single long-term-deployment sensor at each site, whereas Figure 5 in the main 142 

paper presented results for the entire “testing” set of sensors over a shorter period. 143 

S.6.S.5. Assessment metrics 144 

For 𝑛 measurements of concentration by the sensor (𝑐) and reference (�̂�), bias is computed as:  145 

 bias =
1

𝑛
∑ (𝑐𝑖 − �̂�𝑖)

𝑛
𝑖=1    (S.3) 146 
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mean absolute error (MAE) is evaluated as: 147 

 MAE =
1

𝑛
∑ |𝑐𝑖 − �̂�𝑖|

𝑛
𝑖=1    (S.4) 148 

and the Pearson correlation coefficient (𝑟) is evaluated as: 149 

 𝑟 =
∑ (𝑐𝑖−

1

𝑛
∑ 𝑐𝑗

𝑛
𝑗=1 )𝑛

𝑖=1 (𝑐̂𝑖−
1

𝑛
∑ �̂�𝑗

𝑛
𝑗=1 )

√∑ (𝑐𝑖−
1

𝑛
∑ 𝑐𝑗

𝑛
𝑗=1 )

2
𝑛
𝑖=1

√∑ (𝑐̂𝑖−
1

𝑛
∑ 𝑐̂𝑗

𝑛
𝑗=1 )

2
𝑛
𝑖=1

,   (S.5) 150 

These statistics assess, respectively, the systematic differences between the sensor and reference 151 

measurements over time, the average absolute difference in measurements taken at the same 152 

time, and the degree of linearity between the measurements. Lower absolute values of bias and 153 

MAE denote better agreement, while a value of 𝑟 close to 1 denotes stronger correlation. 154 

Additionally, the following EPA bias and precision score metrics (Camalier et al. 155 

2007)(Camalier et al., 2007) were used: 156 

 Precision Score = √
𝑛 ∑ 𝛿𝑖

2𝑛
𝑖=1 −(∑ 𝛿𝑖

𝑛
𝑖=1 )

2

𝑛χ0.1,𝑛−1
2  (S.6) 157 

where χ0.1,𝑛−1
2  denotes the 10th percentile of the chi-squared distribution with 𝑛 − 1 degrees of 158 

freedom, and: 159 

 𝛿𝑖 = 100
𝑐𝑖−𝑐̂𝑖

𝑐̂𝑖
  (S.7) 160 

The bias score is: 161 

 Bias Score =
1

𝑛
∑ |𝛿𝑖|

𝑛
𝑖=1 +

𝑡0.95,𝑛−1

𝑛
√𝑛 ∑ 𝛿𝑖

2𝑛
𝑖=1 −(∑ |𝛿𝑖|𝑛

𝑖=1 )
2

𝑛−1
  (S.8) 162 

where 𝑡0.95,𝑛−1 is the 95th percentile of the t distribution with 𝑛 − 1 degrees of freedom. These 163 

precision and bias scores can be compared to performance guidelines for various sensing 164 

applications (Williams et al. 2014)(Williams et al., 2014). For PM2.5, requirements for 165 

educational monitoring (Tier I) are for precision and bias scores below 50%; for hotspot 166 

identification and characterization (Tier II) or personal exposure monitoring (Tier IV), these 167 

should be below 30%; for supplemental monitoring (Tier III), below 20%; and for regulatory 168 

monitoring (Tier V), below 10%. 169 

S.7.S.6. Seasonal Changes in PM2.5 fraction below 300 nm in Pittsburgh 170 

Aerosol size distributions over the 10-300 nm mobility size range were measured with a TSI 171 

scanning mobility particle sizer (SMPS) at the CMU campus. PM0.3 mass concentrations were 172 

estimated assuming a mobility density of 1 gm/cm3 and spherical particles, and then corrected to 173 
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the equivalent mass at 35% RH using the previously-discussed hygroscopic corrections. PM2.5 174 

mass concentrations were obtained from an NPM instrument attached to a RAMP co-located 175 

with the SMPS. These values were corrected using Eq. (13). For the winter months, the RAMP 176 

RH was assumed to be the same as the conditions inside the SMPS. For the summer months, we 177 

assumed that the SMPS RH was 15% higher (than the RAMP RH) inside the air-conditioned 178 

trailer where the SMPS operated. The SMPS/NPM comparison is further complicated by the fact 179 

that we are comparing an electrical mobility sizer to an optical sizer, but the overall result of 180 

higher sub-300 nm aerosol mass is consistent with previously reported results. Stanier et al. 181 

(2004) observed a larger aerosol volume in the 100-560 nm size range in the summer months 182 

during the 2001-2002 Pittsburgh Air Quality Study. Saha et al. (2018) found that in 2016-2017, 183 

though SO2 concentrations have reduced compared to 2001-2002 resulting in fewer nucleation 184 

events, the warmer months still see higher frequency of nucleation events and with higher 185 

intensity compared to the winter months.  186 

 187 

Figure S.85: Ratios of PM0.3 to PM2.5 based on summer and winter data collected in Pittsburgh. 188 

Individual data points are jittered; means are shown by the purple stars; whiskers represent one 189 

standard deviation of the data. Values greater than unity likely indicate data where our 190 

assumptions are no longer valid, but these are <25% of the data. The median PM0.3/PM2.5 is 0.43 191 

in the winter and 0.53 in the summer. For an annual average concentration of ~10 µg/m3, this 192 

represents a 1 µg/m3 higher sub-300 nm fraction in the summer. 193 
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S.7. Results for Correction Methods 194 

Table S.2: Prior to the application of any corrections, this table presents the MAE, bias, and 195 

correlation coefficients for the as-reported sensor data (the same data as shown in Figure 1) 196 

broken down by relative humidity range. 197 

RH MET PPA 

range MAE bias r MAE bias r 

[%] [µg/m3] [µg/m3]  [µg/m3] [µg/m3]  

30 - 35 6.0 -5.9 0.83 2.8 -0.91 0.70 

35 - 40 7.1 -7.1 0.73 2.8 -0.85 0.78 

40 - 45 6.2 -6.2 0.75 3.0 -0.25 0.71 

45 - 50 5.5 -5.5 0.72 2.6 0.63 0.85 

50 - 55 5.1 -5.1 0.67 3.3 1.2 0.74 

55 - 60 5.2 -5.0 0.71 3.7 1.8 0.74 

60 - 65 4.5 -4.2 0.77 3.4 1.6 0.87 

65 - 70 3.8 -3.1 0.76 3.4 1.0 0.74 

70 - 75 3.1 -2.1 0.80 5.2 3.5 0.75 

75 - 80 3.9 -2.5 0.79 5.4 3.8 0.82 

80 - 85 3.4 -0.6 0.85 6.2 4.7 0.89 

85 - 90 5.4 2.5 0.87 7.9 6.1 0.95 

 198 

Table S.3: This table presents the MAE, bias, and correlation coefficients for the sensor data 199 

after correction with Eq. (3) (the same data as shown in Figure 4) broken down by relative 200 

humidity range. 201 

RH MET PPA 

range MAE bias r MAE bias r 

[%] [µg/m3] [µg/m3]  [µg/m3] [µg/m3]  

30 - 35 2.4 -0.6 0.81 2.2 0.45 0.71 

35 - 40 3.3 -1.9 0.75 2.2 0.09 0.79 

40 - 45 2.7 -1.2 0.77 2.3 0.43 0.72 

45 - 50 2.7 -0.9 0.75 2.2 0.54 0.86 

50 - 55 2.7 -0.4 0.72 2.5 0.53 0.75 

55 - 60 3.0 -0.8 0.75 2.5 0.48 0.73 

60 - 65 3.0 -0.3 0.78 2.1 0.33 0.86 

65 - 70 2.8 0.5 0.76 2.0 0.22 0.75 

70 - 75 2.7 0.9 0.80 2.6 0.49 0.76 

75 - 80 3.0 -0.7 0.81 2.6 -0.36 0.79 

80 - 85 2.8 -0.1 0.86 2.2 -0.34 0.85 

85 - 90 2.9 -0.2 0.90 3.7 -2.7 0.92 

S.8.  202 
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 203 

Figure S.96: Comparison of median one-hour-average NPM (a) and PPA (b) sensor readings to 204 

the BAM instrument during collocation at the Lawrenceville site after correction using a 205 

hygroscopic growth factor only (i.e. corrected measurement is raw measurement divide by fRH). 206 

Colors indicate relative humidity at the time of the measurements. Note that the NPM 207 

measurement corrected in this manner severely underestimates PM2.5 concentration. For PPA 208 

sensors, while absolute errors are decreased relative to those of using the as-reported values 209 

directly, bias is also increased and correlation is reduced. 210 
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Table S.42: Coefficients for empirical correction equations 211 

Coefficient Value Estimate Standard Deviation Unit 

𝛼0 0 2.9 μg
m3⁄  

𝛼1 2.93 0.08 N/A 

𝛼2 -0.11 0.08 μg
℃m3⁄  

𝛼3 0 0.08 μg
%m3⁄  

𝛼4 5.3×10-4 1.5×10-4 m3

μg⁄  

𝛼5 -8.9×10-3 1.2×10-3 ℃−1 

𝛼6 -2.7×10-2 0.11×10-2 %−1 

𝛼7 2.9×10-3 0.8×10-3 μg
℃2m3⁄  

𝛼8 5.0×10-3 1.0×10-3 μg
℃%m3⁄  

𝛼9 0 6.0×10-4 μg
%2m3⁄  

𝛽0 75 11 μg
m3⁄  

𝛽1 0.60 0.0090 N/A 

𝛽2 -2.5 0.51 μg
℃m3⁄  

𝛽3 -0.82 0.11 μg
%m3⁄  

𝛽4 2.9 0.53 μg
℃m3⁄  

𝛾0 21          2.1 μg
m3⁄  

𝛾1 0.43 0.013 N/A 

𝛾2 -0.58 0.090 μg
℃m3⁄  

𝛾3 -0.22 0.023 μg
%m3⁄  

𝛾4 0.73 0.098 μg
℃m3⁄  

 212 

The following figure summarizes the medians and ranges in performance of the corrected NPM 213 

and PPA hourly averaged data across both collocation sites, using all sensors deployed to both 214 

sites (as opposed to only the testing set), as well as specifying performance by different 215 

concentration ranges (0 to 10, 10 to 20, and higher than 20 µg/m3). Correlation is typically better 216 

for NPM sensors (using either empirical correction equation), with r between 0.7 and 0.9, while 217 

for PPA sensors it ranges down to 0.5. Correlations also improve at higher concentrations. The 218 

MAE for both sensors are between 3 and 5 µg/m3. MAE also tends to increase as concentrations 219 

increase, but the PPA sensors appear to be less affected than NPM at concentrations above 20 220 

µg/m3; however, considering there were only two PPA sensors at the Lincoln site (where these 221 

higher concentrations were more common) this may be a sample size artefact. Although unbiased 222 

over the full range, the corrected sensor readings tend to be positively biased at low 223 

concentrations and negatively biased at moderate concentrations. This is opposite to the trend 224 

seen before correction and may be due to overcorrections at the extremes. 225 
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 226 

 227 

 Figure S.107: Comparison of one-hour-average corrected sensor performance compared to BAM 228 

instruments during collocation at both the Lawrenceville and Lincoln sites. Performance metrics 229 

are plotted overall (0-max range) and by different PM2.5 ranges (0-10, 10-20, 20-max). Results 230 

shown relate to a total of 32 NPM and 11 PPA sensors, and only consider sensors with at least 231 

five samples in the relevant range. 232 

The following figures illustrate how the performance of the proposed correction approaches is 233 

affected if data from just one of the sites (Lincoln or Lawrenceville) is used to train the model, 234 

and it is then tested on data from the other site. 235 

- Eq. 
(13) 
- Eq. (4) 
- Eq. (5) 
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 236 

Figure S.118: Comparison of sensor performance compared to the BAM instrument during 237 

collocation at the Lawrenceville site, using correction models calibrated using only data 238 

collected at the Lincoln site. Performance is comparable in terms of correlation and MAE to 239 

models trained using data from both sites, although bias, especially using Eq. (13) for NPM 240 

sensors, is generally worse. 241 

 242 

Figure S.12: Comparison of sensor performance compared to the BAM instrument during 243 

collocation at the Lincoln site, using correction models calibrated using only data collected at the 244 

Lawrenceville site. Performance is comparable except in the 20-max range, where performance 245 

- Eq. 
(13) 
- Eq. (4) 
- Eq. (5) 

- Eq. 
(13) 
- Eq. (4) 
- Eq. (5) 
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is significantly worse than for models calibrated using data from both sites. This illustrates the 246 

importance of calibrating correction equations across the entire range of concentrations which 247 

might be expected during field deployments. 248 

 249 

 250 

Figure S.1310: Evaluation of EPA precision and bias score metrics for hourly-averaged (a) or 251 

daily-averaged (b) data from NPM and PurpleAir sensors. Center-points of crosses indicate 252 

median performance, with arms indicating 25%-75% range. Following corrections, both 253 

instruments meet Tier I requirements for educational and informational monitoring. 254 

a) b) 
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 255 

 256 

Figure S.1411: Results of a performance evaluation of a pair of PurpleAir sensors at the Parkway 257 

East site. Corrections are performed using Eq. (3). Results cover a data collection period of three 258 

weeks. Hourly-average bias and MAE are plotted as a function of time of day in the solid lines 259 

for the two sensors; dotted lines indicate the median performance throughout the day for each 260 

sensor. Median bias and MAE for both sensors are also listed in the figure. Corrections are 261 

performed using Eq. (1). 262 

S.8. Short-Term Performance Assessment 263 

 264 

Figure S.15: Detection of hourly high PM2.5 events by NPM sensor at Lincoln. True positives 265 

(correct detections) are counted for each hour on a monthly basis, along with false positives 266 

Formatted: Heading 1



18 

 

(NPM falsely indicated high PM) and false negatives (NPM missed high PM), with a grace 267 

period of ±1 hour. 268 
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