loading page

High figure of merit in Half Heusler semiconductor RhNbZ with(Z = Ge, Sn)
  • +5
  • Mohammed Amine BOUDJELTIA,
  • zoubir aziz,
  • Sabria TERKHI,
  • Mohammed Abderrahim BENNANI,
  • Bouabdellah Bouadjemi,
  • Mansour BENIDRIS,
  • Samir Bentata,
  • Shakeel Ahmad KHANDY
Mohammed Amine BOUDJELTIA
Université Abdelhamid Ibn Badis de Mostaganem Faculté des Sciences et de la Technologie

Corresponding Author:[email protected]

Author Profile
zoubir aziz
Université Abdelhamid Ibn Badis de Mostaganem Faculté des Sciences et de la Technologie
Author Profile
Sabria TERKHI
Université Abdelhamid Ibn Badis de Mostaganem Faculté des Sciences et de la Technologie
Author Profile
Mohammed Abderrahim BENNANI
Université Abdelhamid Ibn Badis de Mostaganem Faculté des Sciences et de la Technologie
Author Profile
Bouabdellah Bouadjemi
Université Abdelhamid Ibn Badis de Mostaganem Faculté des Sciences et de la Technologie
Author Profile
Mansour BENIDRIS
Université Abdelhamid Ibn Badis de Mostaganem Faculté des Sciences et de la Technologie
Author Profile
Samir Bentata
Mustapha Stambouli University of Mascara Faculty of Exact Sciences
Author Profile
Shakeel Ahmad KHANDY
National Taiwan University
Author Profile

Abstract

Using the Full Potential Linearized Augmented Plane Wave FP-LAPW, as implemented in the Wien2k package. The structural, electronic, magnetic and elastic properties of the Half Heusler (HH) RhNbGe and RhNbSn were investigated. The Generalized Gradient Approximation (GGA) and the Tran-Blaha-modified Becke-Johnson exchange potential method (TB-mBJ) was applied to model the exchange correlation potential. Our results show that the both compounds studied are mechanically stable. Moreover, RhNbZ (Z:Ge,Sn) presents a semiconductor behavior obeying the Slater-Pauling rule. The thermodynamic properties, in particular the Bulk modulus, the heat capacity, the Debye temperature and the thermal expansion coefficients of the two alloys are investigated using the quasi-harmonic Debye model. The semi-classical Boltzmann theory, as implemented in the BoltzTraP code, is used to study thermoelectric properties. The high values obtained figures of merit ZT of RhNbGe and RhNbSn compounds make them promising candidates for thermoelectric applications at low and high temperatures.