*Mathematical Methods in the Applied Sciences*Higher Dimensional Hermite-Hadamard Inequality for Semiconvex Functions
of Rate $(k_1,k_2,…,k_n)$ on the Co-ordinates and Optimal
Mass Transportation

In this paper, we give a new higher dimensional Hermite-Hadamard
inequality for a function
$f:\prod\limits_{i=1}^n[a_i,b_i]\subset\mathbb{R}^n\rightarrow\mathbb{R}$
which is semiconvex of rate $(k_1,k_2,…,k_n)$ on the
co-ordinates. This generalizes some existing results on Hermite-Hadamard
inequalities of S.S. Dragomir. In addition, we explain the
Hermite-Hadamard inequality from the point of view of optimal mass
transportation with cost function
$c(x,y):=f(y-x)+\sum_{i=1}^n\frac{k_i}{2}\big|x_i-y_i\big|^2$,
where
$f(\cdot):\prod\limits_{i=1}^n[a_i,b_i]\rightarrow[0,\infty)$
is semiconvex of rate $(k_1,k_2,…,k_n)$ on the co-ordinates
and $x=(x_1,x_2,…,x_n)$,
$y=(y_1,y_2,…,y_n)\in\prod\limits_{i=1}^n[a_i,b_i]$.
Furthermore, by using the higher dimensional Hermite-Hadamard
inequality, we compare the transport cost in different transport models
on the sphere $\mathbb{S}^2$.

14 Aug 2020

17 Aug 2020

17 Aug 2020

24 Aug 2020

02 Jan 2021

04 Jan 2021

01 Apr 2021

01 Apr 2021

01 Apr 2021

05 Apr 2021

04 May 2021

05 May 2021