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Abstract—This paper proposes a new approach for conver-
gence analysis of continuous action iterative dilemma (CAID)
to reach a stable consensus outcome within the prescribed time.
Unlike usual game theory, where players can only choose between
two options, i.e., cooperation or defection, CAID lets players pick
from varying options and make more nuanced decisions. In the
proposed strategy, a prescribed function, which is tunable by
the user, adapts the learning rate of the player’s strategy. This
new method guarantees that players will eventually agree on a
single strategy, regardless of where they started initially, and it
achieves this agreement in a predefined time set by the user.
The Lyapunov analysis guarantees the convergence of strategy
to a consensus within a prescribed time. The simulation results
of the proposed scheme with two evolutionary game examples
demonstrate faster convergence and fewer iterations compared
to the state-of-the-art method.

Index Terms—Prescribed time, Convergence analysis, Evolu-
tionary game theory, Social dilemmas, Lyapunov theory.

I. INTRODUCTION

Recent interest in social networks has spurred research
into the evolution of cooperation among individuals, notably
through the application of evolutionary game theory [1].
This mathematical framework is vital for analyzing how
systems evolve and group behaviors adapt in changing en-
vironments [2]. Specifically, evolutionary game theory utilizes
well-established models, such as the prisoner’s dilemma and
the snowdrift game, to explore these dynamics in depth [3].
These models have been the focus of extensive study and
have yielded noteworthy findings [4]. However, traditional
applications of evolutionary game theory often adopt a bi-
nary strategy framework, limiting players to choices of either
absolute cooperation or outright defection. This dichotomy
fails to capture the complexity of strategies observed in real-
world interactions, where individuals’ actions exhibit a wider
range of subtlety and diversity. Therefore, adopting nuanced
continuous strategies is critical to represent complex social
interactions [5]. This paper explores the continuous action
iterated dilemma (CAID), which allows for a spectrum of
cooperative behaviors and offers a more realistic depiction
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of social dynamics [6]. CAID extends beyond the binary
framework, providing new insights into the complexity of
autonomous individuals’ strategies in social networks.

Numerous methodologies have been developed to study
the convergence properties of evolutionary game theory [7].
An investigation into an evolutionary network game model
incorporating delays, presented in [8], focuses on the game’s
progression toward equilibrium and the emergence of stable
strategies. The work in [9] introduces a centralized algorithm
that coordinates groups of devices through the principles of
evolutionary game theory. Additionally, the study in [10]
reveals a dynamical framework for analytically examining the
evolution of cooperation across complex networks. Further-
more, an exploration of global convergence related to replica-
tor dynamics in scenarios filled with hybrid agents engaging
in repeated snowdrift games is discussed in [11]. A common
technique for affirming convergence in evolutionary gaming
scenarios involves utilizing the Jacobian matrix. This approach
exhibits a dependence on the network structure among players,
which increases the struggles in analyzing the convergence
behavior of large and complicated networks. Accordingly,
developing novel methodologies to evaluate the convergence
dynamics is a pragmatic pursuit with the evolutionary game
theory.

The Lyapunov function is extensively employed in the anal-
ysis of stability and convergence for complex nonlinear dy-
namical systems [12]. The study in [13] utilizes the Lyapunov
function as a superior method to analyze the asymptotic con-
vergence of evolutionary dynamics within intricate networks.
Furthermore, using the Lyapunov function, the work in [14]
explores the asymptotic convergence analysis of evolutionary
dynamics with two-layer networks. To preserve accelerated
convergence time with further robustness against uncertain-
ties, the finite-time stability is presented in [15]. Finite-time
stability is characterized by the property that the required time
for system trajectories to reach equilibrium points is confined
to a finite duration. Finite-time convergence analysis for CAID
is presented in [16], offering a nuanced perspective on player
behavior and the dynamics of continuous actions. However,
the finite time analysis revealed that the convergence time is
influenced by the initial strategies of the players. As a result,
strategies that start far away from the consensus value take
a longer time to reach convergence. Recently, the prescribed-
time stability has been introduced in [17], which guarantees an
adjustable and accelerated convergence time regardless of the
initial conditions. This approach achieves convergence at any
pre-assigned time by directly setting the time parameter in the



structure design [18]. To the best of the authors’ knowledge,
current literature in evolutionary game theory does not cover
the application of prescribed-time convergence analysis.

This paper proposes a prescribed time convergence approach
for the CAID problem with the following key contributions.

o This work introduces a new model for understanding
cooperation in networks. Unlike the traditional binary
approach that limits players to only two choices, the
proposed CAID model allows for a wider range of
strategies. This additional complexity provides a more
accurate picture of how cooperation evolves over time.

o A novel analytical approach is introduced for assessing
the convergence of evolutionary dynamics in CAID. The
proposed prescribed time convergence method achieves
a faster convergence time of CAID consensus. More
importantly, this method attains convergence at any pre-
assigned time, which is explicitly defined as a time
parameter in the proposed strategy.

o The Lyapunov theory is employed for the prescribed time
convergence analysis of CAID.

o The effectiveness of the proposed strategy is demon-
strated through simulations involving two evolutionary
games. A comparative analysis of these simulations
strengthens the validity of the proposed approach.

The remainder of the paper is organized as follows: Section
IT discusses the problem formulation for the dynamic model of
continuous action iterative dilemma. Section III presents the
main result of the proposed scheme, where the prescribed time
convergence analysis is established. Section IV illustrates the
comparative numerical analysis for the proposed strategy with
two evolutionary game examples. The conclusion is made in
Section V.

Notation

Throughout this paper, R is a real number, R™ denotes n
real vector, R™*"™ represents n X n real matrix. For z € R
and a > 0, the symbol [2]” = |z|%sign(z) € R, where
sign(+) is a standard signum function and | - | is an absolute
operator. The symbol zT denotes the transpose of z, for
z = [21,22,23,...,2,)7 € R" the symbol |z = V2zTz,
Amin2(L) represents the second smallest eigenvalue of £ €
]Rnxn.

II. PROBLEM FORMULATION

Consider a scenario with A/ players, and the connections
between these players are determined by an adjacency matrix
denoted as A € RV >N If there’s a connection between player
i and player j, then the element a;; of A is 1, otherwise zero.
Since this paper utilizes a fully connected network, a;; =
aj; = 1 can be achieved for every set of ¢, j players. Unlike the
binary strategy commonly used in conventional evolutionary
game theory, this paper employs the CAID approach, where
i player strategy is continuous, i.e., z; € [0, 1]. Note that full
cooperation is represented by z; = 1, while complete defection
is represented by z; = 0. The payoff matrix of a 2-player game

under CAID can be represented by:
|:’u}0 wl] (1)

w2 W3

where w; for ¢ = 0,1, 2, 3, signifies the player’s playoff. Based
on Darwin’s survival of the fittest theory, the strategy fitness
between two players (¢ and j) can be defined by F(z;, z;) as:

.F() = WoZ;zj + w1(1 — Zi)Zj + ’LUQZZ(l — Zj) + UJ3(1 — Zz)(l — Zj)
= (wo — w1 — wa + w3)z;iz; + (w1 — ws3)z;
+ (w2 — w3)z; + ws. 2

The difference between the strategy fitness is evaluated as

Fji = F(24,2i) — F(2i, 25) 3)

Inspired by imitation dynamics, players choose one of their
neighbors’ strategies with a certain probability, leading to the
following dynamics [16]:

zi(k +1) = (1 — qij)zi(K) + qijzi(K), 4)

where r represents iteration number, g;; = p1/(1+exp™ i),
p and p are two positive constants. Using the difference
equation Az;(k) = z;(k + 1) — z;(x), the dynamic equation
for strategy adaptation in a two-player CAID game can be
expressed as

Zi(t) = Qij (Zj (t) — Zz(t)) (5)

Given the interconnected relation among N players, the
strategy fitness of player ¢ (F(z;)) can be determined using
(2) as:

N N

F(zi) = Z]:(Zi,zj) = Z((wo — w1 — w2 +wW3)zizj
j=1 j=1

+ (w1 — wg)Zj + (w2 — wg)Zi + ’wg). (6)

Therefore, the difference between the strategy fitness of player
1 and player j can be inferred as:
‘/—jji 2.7:(2’]) —]:(Zi). (7)
Like in dynamics (5), the governing dynamic equation
for strategy adaptation in an A -player CAID game can be
expressed as:

N
2= [ Xas0-=0) . ®

Here, the given dynamic equation enables players to learn
precisely from strategic differences, which deviates from real-
world game scenarios. In [16], a finite time-based CAID dy-
namics model is incorporated, which integrates player learning
with a discounted rate (v € (0,1)), and is expressed as:

N
500 = 0 | Y L) - 0] ©)
j=1

However, its convergence time depends upon the initial
condition and takes more number of iterations to achieve
consensus.



Therefore, this paper proposes a new CAID dynamics model
based on the prescribed-time concept, incorporating player
learning time that can be assigned a priori. The proposed
CAID dynamic model is given as

. N
Zi(t) = % (Oé + 7728) ZQij(Zj(t

where o > 0 is a constant, 7 is a positive constant, and func-
tion k(t) is defined in Lemma 1 in the subsequent section. The
parameter 1 should be selected such that n > m,
where Amin2(L(gi;)) is the second minimum eigenvalue of
the Laplacian matrix L(g;;).

)—z(t),  (10)

III. CONVERGENCE ANALYSIS

A few lemmas are stated first that will be employed for the
convergence proof of the proposed dynamic model (10).

Lemma 1: [19] (Prescribed Time Convergence) For a con-
tinuous system & (¢) = g(z(t),t) € R™, 2(0) = x¢, with origin
being its equilibrium point, consider a function W(x(t),t) :
R™ x Ry — R, which is continuously differentiable. If 3 a
constant ¢ > 0 such that the given conditions for W(z(¢),t)

W(O,t) =0, and W(x(t),t) > 0 for () € R" /{0}
W(a(t) = —eW(x(t) — 258 W(x(t)) for a(t) € R

(11)
holds on [tg, 00) with
t, h
I‘L(t) — (tp—‘rto—t) ) t S [tO;tO + tp) (12)
1 t € [to+ tp, o)
and
bRt € Tt to +
,‘{,(t) _ tpK: ) [ 0540 P) (13)
0 t € [to + tp, 00)

where h is a positive constant, ¢y represents the initial time,
and t,, denotes the user-defined pre-assigned convergence time.
Then, one can achieve

{ limtﬂ(toﬂp)— W(l’(t),t) = O,

W(x(t),t) =0 Vt>to+tp. (14)

Lemma 2: [12] The following properties are valid for an
undirected connected graph G:

1. Za”

zTLx

min = ———
2£0,1Tz=0 ||x||?

7)) =" La (15)

= )\minQ(L) (16)

where L represents the Laplacian matrix of G, which is defined

as L = [I;;] € RV*V | and
l.. = 7 17
Y {Z/]:/_l hti Qi AE =] 4

Lemma 3: [20] Given an undirected network with the
condition a;; = a,;, then

1 N
;(52_:(1” (8:,65) 52

where F(d;,0;) is any function of §; and 4;.

The prescribed time convergence analysis of the CAID
problem is investigated in the following theorem.

Theorem 1: Suppose all players are fully connected. Then,
the proposed strategy dynamics (10) solves the consensus
iterative dilemma in a prescribed time t,, that is pre-assigned
by the user.

Proof: Define @ = N ZZ 1 #i(t) be the average strategy
value of AV players. Based on Equat10n (10), it can be inferred
that c remains constant because ZZ 1 4:(t) = 0. Defining the

F(di,05), (18)

error as €;(t) = z;(t) — w. Further,
El(t) - €j(t) = Zl(t) —w — Zj(t) +w = Zl(t) — Z](t) (19)
Since w is fixed, thus &;(t) = 2;(t) — w = %(t) — 0 = 2;(¢).
Now considering a Lyapunov candidate
V(ei,t) Ze T (t)e(t), (20)

where £ = [g1,¢9,... € RV. The time derivative of

V(ei,t) yields

en]t

zi(t))-
2n

I
M=
o
—
Nt
==
A
+
3
H
\_/
;Q
%
k}l\z

For brevity, the arguments of the function in the Lyapunov
analysis are dropped in the latter part of the proof. Substituting
the relation (19) in (21) gives

) 1 N P N
V:*Z gila+n— Z%‘j(f‘?j—&)
N i=1 st
o N N n i N N
= 2o D (e —e) F p e D e ) diles —€)
i=1  j=1 i=1  j=1
(22)
Using Lemma 3 yields
V= QJ\/‘l]X:l%J £5) f‘—5i)+wgi;1qz‘j(5i—5j)
x (g5 — €')
0 ke
= Z qij(ej — €i) ) IN R Z qij (5 — &)
1,j=1 i,j=1
X (g5 —¢€ )
0 ke
o Nk 2
2N ijl q’Lj 1 2NH Z_;l ng(é“] 51)



Using both the properties of Lemma 2, one can rewrite (23)
as

V= —%25TL(qij)e - %EQETL((]U)E
< 22 ) — oy I
< —Q%AminQ(L(sz)) ”&:2”2 - Q%SAmiHQ(L(Qi]’)) ”2”2
- fQ%Ame(L(q,;j))v - 2%/\ming(L(qij))§V. (24)

Since from the design selection, 1 > m Therefore,
NAmin2(L(gi;)) > 1. Also, from the multi-player system
problem, N >> 1. Consequently, & Amin2(L(gij)) < 1. Now,
substituting this result in the Lyapunov analysis by taking the
upper bound of inequality (24) gives
@
N .
<—cv-2%y
K

V< 2% A2 (Lgi))V — 2%1/

(25)

where ¢ = 2% Anin2(L(gi;)) > 0. The inequality (25)
satisfies the prescribed time convergence condition (11) given
in Lemma 1. Thus, as V(t) goes to zero for all time ¢ > ¢,,
all the error variables ¢;(¢) for i = 1 to N will also go to zero
for all time ¢ > ¢,,. As a result, all the player’s strategies z;(t)
will achieve a consensus (i.e., @ = < Ef\il z;(t)) within a
prescribed time t,, and interesting this prescribed time ¢, is
assigned by the user. Therefore, the convergence time can be
selected beforehand, and it is independent of the initial player
strategy. u

Remark 1: Unlike the work in [16] with the strategy dy-
namics (9), the proposed strategy will not be affected by
the chattering issue because there is no sign(-) function in
dynamics (10).

IV. NUMERICAL ANALYSIS

This section demonstrates the validation of the proposed
prescribed time strategy dynamic model and compares its con-
vergence performance with the state-of-the-art finite-time con-
vergent model [16]. Two well-known examples of game theory
problems, i.e., prisoner’s dilemma and snowdrift dilemma, are
realized under both schemes to illustrate their effectiveness
and convergence time. These classic dilemmas are used to
model situations like corporate competition, international rela-
tions, diplomacy, and other relevant professions. These games
showcase how individual and collective rationalities conflict or
reason with each other. It effectively explains why seemingly
rational actors might not cooperate, even when it benefits
everyone [21].

Accordingly, continuous action iterative prisoner’s dilemma
(CAIPD) and continuous action iterative snowdrift dilemma
(CAISD) are introduced as illustrative examples. The payoff
matrices for these dilemmas are outlined as follows:

7

CAISD: [gp/Q gp}
g

CAIPD: [9 ; P (26)

0 27

where g stands for the benefit received by the individual, while
p represents the cost borne by the cooperator. Further, g > p.
The parameter values of the playoff matrices and both the
schemes are written in Table 1.

TABLE I: Parameter values

System/Scheme
CAIPD, CAISD
Finite time [16]
Proposed prescribed
time

Parameters
g=5p=1,N=42, 2,(0) € (0,1)
5 =0.5,¢=0.5 a=0.5
h=145,a=p=05n=2,p=1
tp = 2s for CAIPD, t,, = 1s for CAISD

The game is set up with A/ = 42 agents, and each agent
starts with a random strategy between 0 and 1. The simulation
is conducted to see if all the agents can eventually agree on the
same strategy based on the rules of continuous action iterated
dilemma.

A. Numerical Results of CAIPD

The simulation results of the proposed prescribed time and
comparative finite time [16] for the CAIPD game in the fully
connected network are depicted in Fig. 1. The convergence
response of the prescribed time strategy (top subplot of Fig.
1) illustrates faster convergence to the consensus with fewer
iterations compared to the state-of-the-art method. Further, the
convergence time is achieved at the exact assigned time, i.e.,
t, = 2s.
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Fig. 1: Convergence analysis for CAIPD under both schemes.

B. Numerical Results of CAISD

In this example, the pre-assigned time is selected as ¢, = 1s.
The simulation results for the CAISD game within a fully
connected network are presented in Fig. 2. The players’
strategy in the prescribed time scheme demonstrates quicker
convergence to a common value at the allotted time ¢, = 1s,
as seen in the top subplot of Fig. 2. Moreover, the number of
iterations is also less in the proposed strategy compared to the
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Fig. 2: Convergence analysis for CAISD under both schemes.

finite time scheme. The finite time strategy takes 6 iterations
and 3s to converge.

Table II presents the performance comparison based on
convergence time (7.) and number of iterations. The table
clearly highlights the superior performance of the proposed
prescribed time method over the finite time scheme for both
games.

TABLE II: Performance of CAID games under both schemes.

Games — CAIPD CAISD

Schemes | No. of iterations | 7. | No. of iterations | T,
Finite time [16] 8 4s 6 3s
Prescribed time 4 2s 2 1s

V. CONCLUSION

This paper analyzes the convergence of CAID, allowing
players to explore a much wider range of strategic options.
A novel dynamic strategy is adapted using the prescribed
time convergence method, achieving two key milestones: con-
vergence of strategy consensus is independent of the initial
strategies, and convergence time is tunable by the user in
advance. These features are achieved by adapting the player’s
learning rate with a predefined prescribed function. The pre-
scribed time convergence is affirmed by Lyapunov stability
analysis. Further, numerical analysis is carried out to com-
pare the proposed method with the state-of-the-art finite-time
method for CAIPD and CAISD games. These comparisons
convincingly demonstrate that the proposed approach achieves
faster convergence and requires fewer iterations.
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