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Abstract—Reviewing software changes is crucial, as it mitigates
the introduction of defects and thereby saves time and reduces
costs. Just-in-time (JIT) defect prediction has emerged as an
approach to support the review process by predicting the likelihood
of defects in new commits. Effort-aware evaluations were proposed
to better manage developers’ limited time to review changes and
analyze the applicability of JIT defect prediction approaches.
However, current effort-aware approaches neglect the time-
dependent nature of software engineering, thus overstating the
performance and applicability of such approaches. Further, they
do not reflect state-of-the-art software development practices. In
this work, we discuss these limitations and propose a paradigm
shift to evaluate JIT defect prediction more realistically and
redirect the focus to saving effort under the condition that defective
commits are still reviewed. Thus, we propose performance metrics
that better represent applicable JIT defect prediction. We further
analyze reliability techniques that adapt the prediction results and
allow for a risk-based application of JIT defect prediction models.
Taking this new perspective, we find that while still reviewing
95% of defective commits, on average, 46% of the non-defective
commits are correctly identified by JIT defect prediction models
and can be skipped; therefore, 20% of the total avoidable effort
can be saved by employing JIT defect prediction models.

Index Terms—Just-In-Time Defect Prediction, Effort Awareness,
Reliability, Empirical Evaluation

I. INTRODUCTION

When developing software, it is important to review changes
in order to discuss arising issues and find defects early. To
aid this process, just-in-time (JIT) defect prediction assigns a
risk value to every new commit in the version control system
to help developers decide if a review is needed [1]]. In recent
years, researchers have focused on effort-aware approaches to
investigate the applicability of JIT defect prediction approaches
under realistic conditions. Their primary objective is to identify
as many defective commits as possible within a limited
inspection budget. This involves ranking commits based on
their probability to introduce defects and the associated effort
needed to inspect these changes [2]. Based on this ranking,
commits are reviewed until the predefined inspection budget
is exhausted. Most studies assess the performance of their
approaches by reporting the proportion of all defective commits
that can be identified using 20% of the total inspection effort
(e.g., [31-[6D.

While state-of-the-art JIT defect prediction evaluations in-
clude the developers’ effort, several assumptions of these effort-
aware approaches contradict current development practices and
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call into question the value of such assessments. First, effort-
aware approaches rank all changes to find a large number
of defective commits with limited effort, thereby neglecting
the chronological order of commits. This means that reviews
are postponed until multiple changes are committed. This
contradicts the intuition of JIT defect prediction, intending
to evaluate new commits immediately and rendering current
effort-aware approaches impractical [7]. Second, the predefined
inspection budget used in the evaluation can only be determined
after the development has ended. Third, best practices in
software engineering mandate a lightweight code review for
every commit, further questioning the general presupposition
of a limited and fixed inspection budget. We argue that current
effort-aware evaluations fail to represent applicable JIT defect
prediction, and the concept needs to be reevaluated. A detailed
description of effort awareness and its limitations is provided
in Section |[I-B| and Section [III} respectively.

In order to measure the benefit of JIT defect prediction
models in a realistic setting, we propose necessary adjustments.
Given the need for immediate reviews in a just-in-time
context [8]], we align evaluations with the time dependency
of JIT defect prediction, keeping the chronological order of
commits and promptly assigning reviews after each change.
Further, we propose performance metrics that put an emphasis
on the saved effort and are not restrained by a fixed inspection
budget. From this new perspective, we assess the potential
value that a developer can gain applying JIT defect prediction
systems and explore techniques to enhance JIT defect prediction
applicability by answering the following questions:

« RQ1: What are the key metrics to evaluate applicable
just-in-time defect prediction, and how do state-of-the-art
prediction models perform in terms of these metrics?

« RQ2: To what extent can reliability measures be utilized to
enhance the applicability of defect prediction approaches?

Our research shifts the focus from assessing the effectiveness
of JIT defect prediction models to a balanced and efficiency-
oriented approach. We aim to detect the majority of defective
commits while optimizing for saved effort. We find that
adjusting models for reliability allows the identification of
most defects while preserving significant portions of effort.
While these adapted models provide applicable JIT defect
prediction, fine-tuning them remains a manual task.

II. BACKGROUND AND RELATED WORK

In this Section, we describe the background and related
work regarding JIT defect prediction approaches and their
effort awareness as the foundation for this research.
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TABLE I

STATE-OF-THE-ART FEATURES FOR JIT DEFECT PREDICTION

Feature Description
" LA Number of lines added by the change
S LD Number of lines deleted by the change

LT Number of lines in the files before the change
= NS Number of modified subsystems
é ND Number of modified directories
& NF Number of modified files
| ENT Spread of modified lines across modified files
» NUC Number of unique changes to all modified files
£ NDEV Number of past developers modifying the
£ changed files

AGE Time between last and current change to modi-

fied files

EXP Number of prior developer/reviewer changes
» REXP Number of prior developer changes weighted
% by the age of the respective change
‘s SEXP Number of prior changes to modified subsys-
& tems that an developer has participated in
=  AWARE Proportion of prior changes that an developer

has participated in

ITER Number of reviews that were performed
5 NREV Number of persons, reviewing the changes
E NCOM Number of review comments

AGEREV  Time between the review request and the final

approval

A. Just-in-Time Defect Prediction

JIT defect prediction, first introduced by Mockus and Weiss
[1], aims to support developers by predicting whether a new
change contains defects and should be investigated. This has
several benefits compared to traditional defect prediction, where
defects are predicted for whole modules or releases. First,
reviews can be conducted shortly after the commits are pushed
to the remote repository while changes are still tangible [§]]. In
addition, predicting defects at the level of individual changes
reduces the amount of code that needs to be investigated to
the updated lines within the revised files. This leads to more
targeted reviews [2]. These benefits align well with modern
code reviews used in software development today [9], [[10].

In JIT defect prediction, a classifier determines if a change
is defective (binary classification). Different approaches have
been proposed in various studies, using different sets of features
extracted from the software development history, such as size
or diffusion of the change, history, or workflow-based features
(e.g., [, (2], [6[, [11]-[13]])) to learn a defect prediction
model. Most studies use the set of well-established features
for comparing the performance of different model approaches
shown in Table|ll Recently, Bludau and Pretschner [6]] published
an extended set of features that additionally contains workflow
information (e.g., the number of changes in a merge request or
the time needed to get a feature merged) and syntactic change
information extracted from the changes in the abstract syntax
tree (breadth or depth of the change and the types of changed
nodes). They report increased performance in their experiments
compared to solely using the features from Table |Il For the
experiments conducted in this work, we use their data set and

features as a baseline since the work presented in this paper is
not concerned with increasing the performance of JIT defect
prediction models in general but rather investigates more effort
awareness and applicability.

Researchers commonly employ different machine learning
techniques such as Logistic Regression [1]], [2]], [14], Support
Vector Machines [12], Naive Bayes [[15], Decision Trees and
Random Forests [14], [[16]], [17], or Neural Networks [18]-[21]].
In recent publications [6], [22], [23]], Random Forests models
reported the best performance. The most direct approach to
decide if a change should be flagged as defective is directly
utilizing the defect prediction model output. If the defect
probability of the model for a particular commit exceeds a
threshold, then that commit warrants a review. For experiments
conducted in this work, we use the Random Forest algorithm
as it already demonstrated good results.

MclIntosh and Kamei [24]] investigated the evaluation proce-
dures used in JIT defect prediction studies. They discovered
that cross-validation techniques do not accurately represent the
temporal nature of software development. Splitting training
and test data based on random sampling, newer commits could
be used to train a model subsequently evaluated on preceding
commits. This can result in overly optimistic performance
results. They also point out the need to re-train models regularly.
They propose timely data set splitting to address this issue,
keeping the order of commits. They introduced short-term
splitting, where data from the past six months is used to train a
defect prediction model to predict the defectiveness of commits
from the subsequent six months. In the wake of their research,
numerous studies have adopted this approach (e.g., [6], [[18]]).

B. Effort awareness

Implementing defect prediction in an industrial context,
where developers only have a limited time budget, necessitates
applying effort-aware techniques for quality assurance and
verification tasks [2], [25]. Kamei et al. [[2] propose to evaluate
the performance of JIT defect prediction approaches in general
and consider the developers’ effort expended during the review
of changes. The objective of effort-aware JIT defect prediction
is to optimize the review process by finding the majority of
defects while conserving effort. Given that developers have
limited time and about 20% of the code contains 80% of
defects [26], Kamei et al. [2] suggest that JIT defect prediction
models should be evaluated with a focus on this fixed available
budget. They choose 20% of the total effort of all commits
as a threshold for the limited effort developers can spend
on reviewing changes. This threshold has been subsequently
adopted by other studies evaluating effort awareness (e.g.,
(3], 150, 6], [27]). Many recent JIT defect prediction studies
have incorporated an effort-aware evaluation [7]. Various
case studies have also featured effort-aware evaluations (e.g.,
[28]]). However, there is doubt that effort-aware evaluations
realistically reflect the goals of JIT defect prediction, especially
timely reviews [7]]. In the remainder of this section, we will
describe how developer effort is defined, how current effort-
aware evaluations work in detail, and what metrics are used to
assess effort awareness.



1) Effort: To assess the effort awareness of JIT defect
prediction approaches, a measure is needed that quantifies the
required effort to inspect a change. Kamei et al. [2] introduce
the total number of changed lines as an approximate value
for the effort needed to inspect a change. The intuition is
that a commit with a large number of added or deleted lines
would typically require more time to inspect. To the best of our
knowledge, existing effort-aware JIT defect prediction studies
adopt this measure. Throughout this paper, we also use this
definition and denote it as effort(c) where c represents the
commit in question.

They further define defect density as the ratio of the model’s
confidence (mopapitiry) in @ commit being defective to the effort
required to investigate it. Defect density, therefore, is a measure
to adjust the model output by the effort needed to investigate
a change, weighing the effort of a review and the potential
value of a review. Equation [I] describes defect density for a
commit ¢ and a specific defect prediction model m.

mprobability(c)
effort(c)

Equation [I] shows the tendency of effort-aware techniques to
increase the defect density of small commits since the most
effort can be saved, neglecting large commits. However, this
ignores the fact that large commits tend to be more error-prone
[29].

2) Effort-aware risk score and ranking: Effort-aware JIT
defect prediction assigns an effort-aware risk score for each
commit ¢ (Equation [J). The score represents the perceived
need to review a particular commit, factoring in its potential
for defects and the effort required to review it. Afterward, all
commits C' are ranked based on this score, determining the
order of investigation for identifying most defects with minimal
effort (Equation [3).

defect_density(m, ¢) = )

@
3

risk(m, ¢) = risk score of ¢ where ¢ € C

rank(c;) = Z[[m’sk(m, ¢;) < risk(m, ¢;)]
J#1

Different approaches in the literature propose different risk
scores to rank the commits [2]—[4f, [20], [30], [31]. These
scores rank commits based on factors like their likelihood
of introducing defects based on the defect prediction model
[20], the density of defects in the changes [2], the required
effort [|32]], or a combination of these aspects [4]. Additionally,
several unsupervised approaches were proposed in the literature
(e.g., [S], [32]). They are based on the observation that
small commits do not produce considerable effort and can
be investigated without huge impact. For example, Liu et al.
propose ranking the commits solely based on the total changed
lines (CHURN) [32], equivalent to the effort notion used
in supervised approaches. Unsupervised approaches perform
similarly to supervised techniques due to the tendency of effort-
aware evaluations to penalize large commits in general.

To the best of our knowledge, the described risk scores
represent the state-of-the-art used in recent effort-aware JIT
defect prediction studies. They all rank commits and stop the
review process after a certain inspection budget was spent.

Yet, JIT defect prediction focuses on timely predictions and
notifying developers and reviewers early, which renders current
effort-aware evaluation impractical [7]].

3) Evaluation metrics: In this Section, we describe existing
effort-aware performance metrics used to evaluate JIT defect
prediction approaches regarding their efficiency. Effort-aware
evaluation metrics are calculated based on the risk score and
their ranking (Equation [3). According to existing studies and
based on Kamei et al. [2], the effort budget is defined as 20%
of the total effort needed to inspect all commits.

The most prominent effort-aware metric is the recall at
20% of spent effort (R@20%). It is used in most studies [4]]
and reports the fraction of found defects investigating 20%
of changed lines. It is often also called PofB20 (e.g., [2]),
Recall@20%LOC (e.g., [33]]) or Pegor (e.g., [34]).

With a similar intention, studies often report P,,; repre-
senting the area between a perfect effort-recall curve based
on a perfect oracle and the effort-recall curve based on the
classifications of a defect prediction model. This measure
removes a strict effort budget cut-off value (20%) since a
different cut-off value may lead to different results [2]. A
larger value implies a smaller discrepancy between the optimal
and the model results.

Huang et al. recently proposed two additional metrics
for evaluating effort awareness [4]. First, they introduce the
proportion of reviewed commits when limiting to 20% total
effort (PCI). This metric accounts for the problem of frequent
context switches, where a lower PCI value is preferable. Second,
they introduce the number of initial false positives before the
first correctly classified defective commit is predicted (IFA).
A high IFA may cause developer frustration, as early wrong
predictions lead to wasted reviewing effort [35]. This metric
is tailored towards avoiding false positive predictions as they
would spend effort from the small inspection budget and lower
R@20% significantly.

In current effort-aware evaluations, the emphasis is on finding
most defects with a limited inspection budget, and the presented
metrics mirror this fact. Effectiveness is measured by recall,
and the efficiency of the approach is factored in by applying
the budget constraint. We propose to focus on evaluating the
efficiency without the need for a fixed inspection budget by
focusing on the performance of the model in the negative class.

III. LIMITATIONS OF CURRENT APPROACHES

Effort-aware evaluations focus on optimizing risk scores and
reducing early spent effort. A typical approach, as detailed
in Section [[I-B] ranks commits based on a calculated risk
score, proceeding with code reviews based on this ranking.
When reaching the effort budget, the review process is stopped.
Although this method is sound in general, it presents several
limitations and contradictions when applied to real-world
scenarios. To illustrate the problems, we analyze projects from
a recently published data set [36]. It contains defect information
on six large open-source projects. The examples and graphs
shown in the following are taken from the evaluations of the
Kafk project. The data set contains all commits from the
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Fig. 1. Defect and effort distribution in the Kafka project. Each bar represents one commit with the height indicating the number of changed lines.

development history, their size, and a label that tells if the
commit is considered bug-introducing. The evaluations for all
other projects in this dataset show very similar results and can
be found together with further analysis in the supplementary
material provided alongside this workﬂ

A. Ranking of commits

The most pressing issue of effort-aware evaluations is the
missing time sensitivity. As pointed out by Carka et al. [[7],
an immediate evaluation of each new commit is essential in
JIT defect prediction. Therefore, the ranking of commits, a
step that naturally delays evaluation, is neither practical nor
realistic.

To illustrate this issue, we consider an oracle prediction
model that predicts the correct class label for every commit.
Figure [T] depicts three sub-graphs, each representing the first
500 commits (x-axis) in the development history of the Kafka
project and their size, respectively, required review effort (y-
axis). The black bars indicate defective commits, while the grey
bars represent non-defective commits according to the defect
data set. The upper graph chronologically orders the commits,
the center graph represents a perfect rank-based evaluation,
and the bottom subplot shows an perfect approach that keeps
the chronological order of commits (just-in-time evaluation).

We see that large commits (high bars) are scattered across the
whole commit history, while some are defective and some are
not. In the rank-based evaluation, commits are ordered by label
and effort, resulting in two distinct sections with increasing
commit size. The dotted vertical line at 44.97% of effort depicts
the total effort required to identify all defective commits. This is
consistent in both the center and the bottom subplot, indicating
that in a perfect world, both evaluation approaches would detect
all defects investing 44.97% of the total effort. Committing
effort beyond this line becomes unnecessary as all subsequent
commits are non-defective and can be disregarded. In a realistic
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Fig. 2. Direct comparison of the effort-aware recall curve for both rank-based
evaluation and just-in-time evaluation in the Kafka project.

JIT evaluation, however, large commits must be reviewed early.
By ranking commits based on size, there is an overestimation
of the number of defective commits that can be identified
with minimal effort. Furthermore, by ranking commits, large
defective commits are investigated later in the process; however,
large commits tend to be more error-prone. This is also shown
by the second dotted line at 20% of the effort. In the case of
rank-based evaluation, more defective commits can be reviewed
with 20% of effort than in the just-in-time evaluation setting,
neglecting early large defective commits but having a huge
effect on the applicability of the approach.

B. Effort budget

With a fixed budget of 20% of the total effort applied in
today’s research, not all defective commits can be investigated.
Applying a timely evaluation, the number of defects that can be
found using that budget is significantly lower, as depicted again
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in Figure 2] Each line in Figure 2] illustrates the effort-aware
recall curves represented by a grey line for the rank-based
evaluation and a black line for the chronological just-in-time
evaluation. The y-axis shows the percentage of found defects,
and the x-axis shows the total effort percentage, indicating
defects found per effort spent. The effort at 20% is indicated
by the vertical orange dotted line.

The just-in-time evaluation curve rises more slowly, requiring
more effort early on, and meets the post-development curve at
44.97% of effort. However, the area under the recall curve in
the just-in-time evaluation setting is 14.3% smaller than in the
rank-based evaluation setting, illustrating that more effort must
be invested early and distributed more evenly, as large commits
can happen at any time and need to be investigated directly
afterward. This results in a lower recall at 20% of the effort.
However, reviewing large commits should not be postponed in

the development process just because they require more effort.

This highlights a challenge in analyzing the applicability of
JIT defect prediction models in an effort-aware context.
Ranking-based approaches give an illusion of efficient effort
awareness, prioritizing commits that are easy to investigate
but carry high risk. While this may reduce effort in the initial
stages, it potentially skews the evaluation results. The inflated
performance is particularly evident in unsupervised approaches
[32], where low-effort commits are inspected first. Although this
strategy identifies numerous defects, it neglects many defective
commits in the early stages of development and results in a
high rate of false negatives. Since the R@20% is the most
used effort-aware metric in JIT defect prediction studies [4]]
and is often the only applied effort-aware metric [7]], we find
that the highlighted difference may have a significant impact
on the validity of such studies and their applicability claim.

C. Modern code reviews

Current effort-aware evaluations in JIT defect prediction
focus on minimizing effort due to budgetary constraints. The
original purpose of JIT defect prediction - spotting defects
early to prevent them from reaching production- is increasingly
overshadowed by this emphasis on a limited budget. Current
best practices in software development echo this disconnect.
For instance, in open-source projects, it is standard to have
all submitted code reviewed [37]. Modern code reviews are
conducted in a lightweight process to have an effective bug
detection process for every change [38]], [39]. Nonetheless, most
existing effort-aware studies operate under the assumption of
a limited investigation budget. Except for F,,;, all prominent
effort-aware evaluation metrics use the spent budget as a cut-off
value for the investigation. We argue that with modern code
reviews being a de-facto standard in software development, the
applicable usage of the JIT defect prediction approaches needs
to be re-evaluated.

IV. APPROACH

Given the limitations of effort-aware evaluations illustrated in
Section we propose a new perspective on the evaluation of
applicable JIT defect prediction to better align with real-world
practices and objectives. Instead of focusing on developer

frustration if too many commits are flagged by the defect
prediction approach, the focus should be on conserving effort by
thoroughly investigating defective commits while minimizing
reviewing efforts for non-defective ones. To create realistic
evaluations of JIT defect prediction studies, the ranking of
commits based on an effort-aware risk score should be avoided.
This includes the definition of a predefined inspection budget
that can only be known in hindsight. Further, the evaluation
metrics need to more clearly represent the potentially and
correctly saved effort applying JIT defect prediction.

A. Timely evaluation

To allow a timely evaluation of JIT defect prediction
approaches, the chronological order of commits needs to be
ensured during the whole training and evaluation process.
First, we advise constructing models only using past commits.
The models should then be evaluated using only data from
subsequent development activities, as suggested by McIntosh
and Kamei [24]. This ensures that the models are evaluated in a
temporally coherent manner. Thereby, genuine behavior during
software development projects is imitated, maintaining the
order of all commits and establishing a chronological sequence
that includes the entire development history.

Current effort-aware approaches rank commits based on their
effort-aware risk score. While this strategy might be justifiable
from a post-project analytical perspective, without ranking
commits we do not know which score value mandates a review.
In standard JIT defect prediction, the model threshold is used
to make the decision. A commit should be investigated if the
model output exceeds a certain threshold. Such a threshold
based on the effort-aware risk score is difficult to set and
interpret. Moreover, with the current definition of effort as the
sum of added and deleted lines, the effort is already used as a
feature to train the defect prediction model, enhancing model
performance significantly [6]. Therefore, the model decision is
already implicitly based on effort. This leads us to question the
necessity of making the decision function itself effort-aware, a
step that may introduce redundancy and overlook other critical
variables. Instead of making models effort-aware, we propose
to craft evaluation metrics that incorporate the effort-saving
perspective more judiciously. Thus, in our approach, we use
the model thresholds to decide if a commit should be reviewed
and evaluate the prediction based on its impact on saved effort.

B. Key performance indicator

The contingency table depicted in Figure [3] offers a compre-
hensive overview of potential outcomes within a classification
task, particularly within the realm of effort-aware JIT defect
prediction. Evaluating applicability of JIT defect prediction,
the effectiveness - True Positive (TP) and False Negative (FN)
segments - and efficiency - True Negatives (TN) and False
Positives (FP)- need to be weighted and discussed separately.
Further, the effort to review a commit varies based on the size
of the commit and has an influence on the cost of unnecessarily
investigated (FP) or missed defective (FN) commits. We
elaborate on these considerations in the following.



defective non-defective

classified as defective TP FP
review mandated | correctly spent effort wasted effort

classified as non-defective FN TN
review skipped | wrongly saved effort saved effort

Fig. 3. Contingency table including effort notion.

1) Effectiveness and efficiency: When employing defect
prediction to enhance the review process, the primary objective
is to ensure that all defective commits are still identified and
reviewed (TP), aiming for a high recall (R), as a not identified
defect (FN) might increase debugging and fixing costs over
time. This concept can be described as the effectiveness of the
approach. To employ JIT defect prediction effectively, there
should be minimal occurrences where defective commits evade
review. Consequently, to ensure the effectiveness of JIT defect
prediction, the number of unnecessarily investigated commits
(FP) and hence precision (P) is not the major focus.

With effectiveness being the main concern, JIT defect
prediction must optimize for saved effort to prove applicable.
This concept can be described as efficiency. Without JIT defect
prediction, all commits undergo review, leading to a maximum
of unnecessarily investigated commits (FP). Applicable JIT
defect prediction should strive to optimize the effort saved in
the process by not reviewing non-defective commits (TN). To
focus on efficiency and evaluate the potential to save effort, we
evaluate the models’ ability to correctly predict non-defective
commits. To evaluate the precision and recall in the negative
class, the negative predictive value (NPV) and the specificity
(SPC) can be utilized. The NPV elucidates the fraction of
accurate predictions out of all negative predictions. Drawing
parallels to precision, NPV represents the precision in the
negative class and, in our scenario, clarifies the proportion of
correctly identified non-defective commits amongst all non-
defective predictions. Thus, focusing on correctly saved effort
while still reviewing most defective commits. Specificity is
calculated as the fraction of TN out of all negative samples.
It can, therefore, be interpreted as the recall in the negative
class, telling how many of all real non-defective commits are
identified by the model. Using specificity in the evaluation
helps to show how many unnecessary reviews can be avoided
by applying the model.

Current effort-aware performance metrics, as well as most
metrics used to evaluate JIT defect prediction in general, such
as precision, recall, or F-score, do not focus on TN samples
and are more tailored to report on effectiveness. The Matthews
Correlation Coefficient (MCC), which is increasingly being
reported as a more balanced metric, considers all four elements
of the contingency table but does not provide a fine-grained
view of effectiveness and efficiency. We evaluate and discuss
the proposed metrics in Section Our aim is to discern if
the change in perspective indeed augments the applicability of
JIT defect prediction.

2) Effort-based metrics: In general, performance metrics
are based on the number of correct predictions and error
occurrences. To highlight the effort, we propose to instead

base the calculation of performance metrics on the review
effort of each occurrence. Rather than counting TP, FP, FN,
and TN occurrences, we substitute each occurrence count by its
caused effort (sum of lines added and removed). For example,
a commit with 100 changed lines is factored in as 100 instead
of 1. While an equal effort distribution across all commits and
both classes would render this distinction irrelevant, research
indicates that larger commits tend to be more error-prone.
The resulting effort-based recall (Rer) measures the correctly
invested effort relative to the effort required to identify all
defective commits. Therefore, identifying a large defective
commit improves (Reg) more than a small one. The intuition is
that detecting larger defective commits is crucial, as they are
more challenging to trace when causing production failures.
Effort-based precision (P.g) quantifies the wasted effort in
reviewing commits. The cost of mistakenly investigating a
small commit is not as significant as misjudging a large
one. The effort-based NPV (NPV.y) evaluates the fraction
of the correctly saved effort. A missed large defective commit
lowers NPV,¢ more significantly than a missed smaller commit.
Likewise, effort-based SPC (SPC.) assesses the fraction of
correctly saved effort using the JIT defect prediction model
from the total non-defective effort. A large reviewed non-
defective commit negatively affects SPC. more than a small
commit. In Section we reason which of these metrics
helps to determine the applicability of JIT defect prediction.

C. Enhanced applicability

The question remains if current JIT defect prediction
approaches can be applicable in practice. Various techniques
could be applied to optimize the key performance indicators
mentioned above to foster applicability. We, therefore, introduce
the concept of a reliability threshold (trefiabitity) for JIT defect
prediction models that can be adjusted by developers to decide
the balance between finding all defects (effectiveness) and
saving effort (efficiency). This tuning parameter can be applied
to take a more or less cautious stand and make the model
predict more or fewer commits as defective. We propose two
methods to augment applicability and assess their validity in
Section [V=C|

1) Threshold Tuning: To achieve an acceptable recall, a
simple strategy is to directly adjust the model threshold and
use it as the reliability threshold. By lowering the treiapility, the
model adopts a more cautious stance in predicting the negative
class. Intuitively, a smaller threshold would lead to fewer FN,
thereby enhancing recall. However, the repercussions of this
adjustment on TN remains ambiguous. We evaluate if the rise
in TP will be more rapid than the decline of FN in Section
V-C

2) Model Trust and Reliability: In domains like medicine,
where the consequences of FN decisions can be exceedingly
high, model reliability scores serve as a way to balance model
predictions. These scores provide insights into the level of
confidence a model holds regarding its predictions. One way to
define such scores is by using the training data and describing
how much the predicted label of a single sample is in agreement
with the labels of nearby training samples. Multiple techniques



TABLE II
OVERVIEW OF USED DEFECT DATA SETS

Project Commits Inducing commits  Fixing commits
Airflow 7,311 1,582 (21.64%) 1,396 (19.09%)
Angular 16,050 2,545 (15.86%) 2,013 (12.54%)
Calcite 2,463 774 (31.43%) 1,182 (47.99%)
Jenkins 8,784 380 (4.33%) 750 (8.54%)
Kafka 5,812 1,377 (23.69%) 1,722 (29.63%)
Pulsar 4,127 1,016 (24.62%) 903 (21.88%)

exist to deduce reliability scores for a given prediction based
on the proximity of training data in the feature space (e.g.,
[40]—[42]). For our evaluation, we use the trust score [41]
as reliability scores. The trust score builds the ratio between
the distance to the closest non-predicted class and the nearest
predicted class training sample. It is a distance measure to the
closest training sample with the same class. It has no upper
bound, and the prediction is more trustworthy the higher the
value. Therefore, it can be applied to existing models and does
not need an adaption of the model architecture or training.
If a model’s trust score is lower than the predefined trliability
the commit gets reviewed regardless of the model prediction.
Again, we investigate if applying the Trust Score will lead to
a faster decline in FN compared to TN in Section Our
aim is to discern whether it can be harnessed to modulate the
frequency of FN and TN predictions during our evaluation,
especially compared to the simpler threshold tuning approach.

V. RESULTS

We presented the drawbacks of current effort-aware ap-
proaches in Section and proposed a novel perspective to
evaluate JIT defect prediction in Section In the following,
we analyze the presented approach to reflect on its applica-
bility and implications. We describe the study design in the
subsequent section.

A. Study design

In order to answer the research questions posed in the
Introduction of this work and to evaluate our approach, we use
a recently published data set [[36]] as ground truth for defect-
inducing commits. This data set contains defect information
from six open-source projects, shown in Table [lIl The commits
contained in the data set were created between January 2015
to January 2020. For every commit in the development history
of these projects, the data set contains a binary label that
tells if the commit introduced a defect. In order to account
for the time-dependent nature of software development and
changing environments, we build defect prediction models
for each of the six projects based on a six-month short-term
strategy as proposed by Mclntosh et al. [24]]. Thus, we do not
use randomized cross-validation to learn and test the models
but rather split the development history of every project into
chunks of six months. Splitting the data in this fashion results
in ten time frames for each project.

For each project and for every commit within each time
frame, we collect the prediction features described in Section

Using these features, a JIT defect prediction model is
learned for every time frame and evaluated on the subsequent
one. We train random forest models, as the classification
algorithm performs best on the chosen data set [6]. To learn
the random forest models, we use the standard implementation
provided by scikit-learlﬂ We concatenate the results of every
time frame to form one continuous and chronologically ordered
development history per project that contains each commit, the
respective defect label from the ground truth data set, and a
defect-inducing probability based on the output of the defect
prediction model as well as the effort needed to inspect the
respective commit.

Based on this information, we calculate all discussed
and proposed performance metrics for each project (RQ1)
and analyze the results in Section To evaluate if the
applicability could be increased using reliability measures
(RQ2), we perform the proposed threshold tuning and trust
score evaluation. To evaluate threshold tuning, we adjust the
predicted label per commit based on the model output directly
by applying different threshold levels to decide if a commit
should be investigated. To calculate the trust score, we use the
model training data from each time frame and calculate a trust
score value for each commit from the subsequent 6-month
time period. We report the results in Section Finally, we
discuss implications and provide an outlook in Section

B. Performance metrics (RQI)

In this section, we evaluate key metrics for applicable JIT
defect prediction. The reported performance values are shown
in Table For all metrics, we report the effort-based results
in brackets. For example, the prevalence (PR) value is based
on occurrence count, while the value inside parentheses is
calculated using the effort of every instance.

Generally speaking, both the standard and the effort-based
values show wide ranges across metrics and projects. As stated
in existing research, this shows that JIT defect prediction
performance highly varies based on the project context. The
prevalence value shows the imbalance of the data set, with
defective commits being the minority class in all investigated
projects. Together with defect size (bracketed values of TP and
FN), they significantly determine the reported performance.
A low prevalence inherently deflates P and inflates NPV due
to how these metrics are calculated [43]]. Re-basing PR on
the commit size always leads to an increased effort-aware PR,
reflecting on the P. and NPV values similarly. This shows
that defective commits, by nature, are often larger than non-
defective changes, a trend consistent across all projects but with
varying magnitudes. It is evident that the model picks up this
fact, and size/effort influences the model decision [6]. Large
non-defective commits are often predicted as defective (FP),
and small defective commits are predicted as non-defective
(FN). FN commits are smaller than FP commits in all projects
and, on average, span 120 compared to 301 lines. The number
of FN commits is comparably low, and large FP commits lead
to high wasted effort in the review process. Consequently, for
every incorrect prediction made by the model, developers are

3https://scikit-learn.org/stable/
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TABLE III
PERFORMANCE METRICS FOR THE DIFFERENT PROJECTS. EFFORT-BASED VALUES ARE SHOWN IN BRACKETS FOR EACH COLUMN.

Project PR TP FN N FP R P NPV SPC
Airflow  0.23 (0.83) 925 (252089) 359 (17141) 3308 (145179) 1090 (180863) 0.72 (0.94)  0.46 (0.58)  0.90 (0.89)  0.75 (0.45)
Angular  0.17 (0.70) 1734 (1148670) 460 (85052) 8052 (600002) 2928 (1152483)  0.79 (0.93)  0.37 (0.50)  0.95 (0.88)  0.73 (0.34)
Calcite  0.33 (2.06) 488 (342581) 142 (14903) 943 (61865) 333 (112385)  0.77 (0.96)  0.59 (0.75)  0.87 (0.81)  0.74 (0.36)
Jenkins  0.04 (0.10) 224 (67173) 102 (9814) 5507 (465476) 1441 (338288)  0.69 (0.87) 0.13 (0.17)  0.98 (0.98)  0.79 (0.58)
Kafka 025 (1.38) 1061 (722685) 195 (16652) 3099 (282234) 752 (254991)  0.84 (0.98)  0.59 (0.74)  0.94 (0.94)  0.80 (0.53)
Pulsar  0.26 (1.00) 743 (477429) 173 (35112) 1823 (270703) 724 (241779)  0.81 (0.93)  0.51 (0.66) 0.91 (0.89)  0.72 (0.53)

investing a substantial amount of effort in reviewing these
sizeable FP commits and miss investigating these smaller FN
commits. This inequitable distribution of effort has implications,
especially for the efficiency of the review process and the
overall cost of defect identification.

With this in mind, we investigate whether the additional
performance metrics, reported in Table give meaningful
insight to evaluate the effectiveness and efficiency of JIT defect
prediction approaches. In Section we propose recall as the
main metric for effectiveness, as it describes the fraction of
still identified defective commits applying JIT defect prediction.
The recall ranges from 0.69 (Jenkins) to 0.84 (Kafka). However,
the reported recall values might still be too low for applicable
defect prediction. The results for R show that wrongly saved
small commits do not significantly affect the metric increasing
Refr; however, these commits could still introduce severe bugs.
This renders Reg impractical. Precision is low in all investigated
projects, with a maximum value of 0.60 for Kafka. P.g sharply
rises compared to P as a small wrongly investigated commit
(FP) is not as effort-intense as investigated large commits.
This information supplements standard precision by indicating
that when investigating small FP commits, their impact on
the total expended effort is limited. Py might help to set
precision into perspective; however, in applicable JIT defect
prediction, P is not a primary concern. Reporting the F-Score
in highly imbalanced data sets while focusing on recall and
not precision leads inherently to lower values. Consequently,
with this perspective the F1-Score has no additional value.

Looking at the efficiency of JIT defect prediction and the
values of NPV and SPC, we see that effort can be saved and
high numbers of TN commits can be detected. The NPV ranges
from 0.87 (Calcite) to 0.98 (Jenkins), while SPC ranges from
0.72 (Pulsar) to 0.80 (Kafka). High NPV and SPC values in all
projects show that the models perform well in the negative class.
Most predicted non-defective commits are correctly classified
(NPV), and many non-defective commits are detected (SPC).
This may lead to applicable JIT defect prediction approaches
in the outlined context. NPV shows lower values because if
a larger defective commit is not investigated, it has a higher
influence on the metric than a smaller wrongly saved commit.
The decrease in NPV compared to NPV can be but is not
always significant. The decline is more pronounced in projects
with a high ratio of large defective commits. Missing already
one large defective commit (FN) severely influences NPV.g.
SPC.s shows that large commits have a high impact when
wrongly predicted defective, lowering SPC.y considerably.
SPC. drops significantly in all projects, showing the model’s

tendency to predict large non-defective commits as defective,
missing out on saveable effort.

Introducing new metrics has provided a new perspective on
JIT defect prediction, emphasizing the effectiveness demon-
strated through recall and the efficiency illustrated by NPC
and SPC. These metrics offer insights into the negative class,
highlighting potential effort savings. Beyond just offering an
alternative viewpoint, the effort-aware metrics pave the way for
evaluating the applicability of JIT defect prediction more pro-
ficiently. The effort-aware metrics generally provide additional
insights but are tightly coupled with their counterparts and
PR. That said, from economic aspects, SPCe¢ sheds additional
light on the extent of avoidable effort conserved. We conclude
that recall, paired with NPV, SPC, and SPC.¢, constitute the
cornerstone of performance metrics for investigating effort-
saving defect prediction. Nevertheless, the reported results,
particularly regarding effectiveness (R), challenge the feasibility
of applying JIT defect prediction with current approaches.
There is a pressing need to refine models for higher recall and
assess whether meaningful effort savings remain achievable
under such conditions.

C. Reliability measures (RQ2)

In this section, we investigate whether adapting the model
threshold (Threshold) or calculating and applying a trust score
(Trust Score) is a viable option to fine-tune JIT defect prediction
model applicability.

As recall is the main metric for deciding if a model is
effective enough, we base all further evaluations on this metric.
First, we want to evaluate if Threshold and Trust Score can
be used to tune recall in a consistent way. Figure ] shows the
reliability threshold tejianiity (y-axis) for Threshold (orange)
and Trust Score (blue) compared to the achieved recall (x-
axis) for one exemplary project, namely Kafka. Looking at all
other projects from the data set, a very similar picture emerges.
The evaluations for the other projects are contained in the
supplementary material provided alongside this work. Looking
at Figure [} we see that recall rises with decreasing model
threshold. On the contrary, for Trust Score, we see that the
recall rises with higher trust score values, as expected. Looking
at these values, generally speaking, setting the trjiapitiy t0 @
lower Threshold or a higher Trust Score continuously leads to
higher recall values. The Threshold curve falls more gradually,
whereas the Trust Score curve has a more extreme slope at the
lower and upper recall bounds and is not as straightforward
to interpret. Moreover, the tjiabiliy for model threshold has a
fixed value range between 0 and 1, whereas trust scores do not
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Fig. 5. Comparison of different performance metrics based on Threshold and
Trust Score tuning. Exemplary depicted for the Kafka project.

have an upper bound, which makes setting the trjiapilicy more
ambiguous.

Since we now know that recall can be tuned using the two
options, we evaluate the model performance regarding NPV, P,
and SPC. The value for each metric is depicted on the y-axis
depending on the tuned recall on the x-axis. Figure [5] shows
results again for the Kafka project. Again, the results are very
similar for all other projects and all evaluated performance
metrics, including the effort-aware metrics. We can see that the
NPV (marked as ’|’), P (marked as ’-’), and SPC (marked as
%) are higher tuning Threshold (blue) than they are for Trust
Score (blue) for most recall values. This relationship breaks
only in a few cases and at the bounds of the recall range (e.g., at
recall levels higher than 0.99 for the Pulsar project). However,
in these cases, SPC is always very low, which means that nearly

no effort can be saved setting trefiapiliy in Such an extreme way.

This shows that under the presumption of a certain recall level,
the Threshold-tuned models do outperform Trust Score-tuned
models in all important performance metrics. This leads us
to conclude that in the case of JIT defect prediction and our
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Fig. 6. Boxplot of trejjavility for Threshold and Trust Score measures to maintain
a recall of at least 0.95 in the different time frames by project.

evaluated models, the simpler Threshold based approach to fine-
tune JIT defect prediction models performs better concerning
the investigated key performance metrics.

For applicable JIT defect prediction, we want to optimize
NPV and SPC while maintaining high recall values. To apply
fine-tuned defect prediction models in an industrial context, a
treliability N€eds to be set by the user. The user would want to
reach a certain level of security to find most defective commits,
obtaining a high recall, by setting trjiabiity- We investigate if the
treliability 1S Stable across time frames (different model training
periods) and if certain tepiapiliy values can be set to ensure a
certain recall. Figure |§| shows the trjabiiity that is necessary
to reach a recall value of 0.95 in different time frames. We
choose 0.95 as an example recall value that represents a high-
security approach. The box size describes the variation in
treliabiliy across the time frames for Threshold (blue) and Trust
Score (orange). We see that for every project, there is variation
in suitable tejiabiy between time frames. Furthermore, the
treliability from one time frame cannot be easily transferred to
the subsequent time frames. Moreover, the optimal trejiapility
value varies between projects. Nonetheless, there are bounds
for treniability (dotted lines) that ensure a certain recall for all
time frames and all projects. Looking at the full project lifespan
and not a specific time frame, a tefiavitiy (0.16 for Threshold,
1.49 for Trust Score) can be selected that on average maintains
a 0.95 recall level for all projects over all time frames (dashed
lines).

The above evaluations show that tuning the model threshold
results in better effort-saving approaches and is easier to
interpret than a Trust Score-based adaption. This is true for all
calculated performance metrics and all investigated projects.
One possible explanation for why the Trust Score performs
worse is that the most important features learned by the defect
prediction models tend to be related to the size of a commit
[6]. If we have a large non-defective commit, the surrounding
training data will be mostly defective, leading to low trust.
Moreover, if we have a large defective commit, the model
already has a high chance of correctly predicting. Because of
the distribution of the data in the training space, the trust score
does not hold additional valuable information that would help



TABLE IV
MEAN PERFORMANCE METRICS FOR DIFFERENT TgrgpiapiLity VALUES FOR THRESHOLD TUNING ACROSS PROJECTS. THE NUMBER IN BRACKETS
REPRESENTS THE STANDARD DEVIATION FOR THE DIFFERENT PROJECTS.

treliability TP N FN FP R NPV SPC SPCt
0.1 1088.33  1219.00  12.67 3781.00  0.99 (0.00) 0.99 (0.01) 0.27 (0.12)  0.09 (0.09)
0.2 1065.33 203500  35.67 2965.00 097 (0.01) 0.98 (0.01) 042 (0.10) 0.18 (0.11)
0.3 1025.83 267833 75.17 2321.67 093 (0.02) 0.97 (0.02) 0.54 (0.08)  0.26 (0.10)
0.4 965.50 3233.00 13550 1767.00 0.87 (0.04) 0.95 (0.03) 0.65 (0.06) 0.35 (0.10)
0.5 86250 3788.67 23850 121133  0.77 (0.06) 0.93 (0.04) 0.76 (0.04)  0.46 (0.10)

with the reliability of the model.

D. Implications and Outlook

In the previous sections, we showed that additional metrics
provide meaningful insights on the applicability of defect
prediction models and that tuning these models can increase
the number of identified defects while still saving effort. In the
best-case scenario, where the tiiapiliy 1 set optimally for every
project to maintain a recall of 0.95, we find that, on average
97.25% (min: Calcite: 95.77%; max: Jenkins: 99.33%) of
skipped commits are correctly skipped non-defective commits
leading to 46.31% (min: Jenkins: 34.04%; max: Kafka: 65.20%)
of the non-defective commits being correctly identified and,
thus, on average 19.70% (min: Angular: 6.52%; max: Kafka:
39.49%) of the avoidable effort is saved.

Based on risk and security aspects, JIT defect predic-
tion could be applied and adjusted in a risk-based manner.
Developers can set teliabiiy based on their preferences and
environment. However, knowing the optiomal trejiability for one’s
circumstances upfront is impossible. Choosing the triiapitity
based on past development activities is not stable. Nonetheless,
a static trefiabiliy OVer the whole project lifespan yields promising
results for all investigated projects. Table [[V| shows the average
performance values for different tjiabiy values, with the
number in parentheses representing the standard deviation
across projects. We can see that the recall is quite stable with
a low standard deviation across all trejiabiiity-levels. With higher
treliability» the standard deviation increases. Furthermore, a lower
treliability 1€ads to higher recall (effectiveness) but also to lower
NPV and SPC values (efficiency). The table also shows that
setting a static treliabilicy value to a rather restrictive value of, for
example, 0.2 guarantees a recall of at least 0.95 for all projects.
We find that applying this tepiabiliy, While still reviewing
97% (min: Jenkins: 94%; max: Calcite: 97%) of defective
commits on average 97.91% (min: Airflow: 96.58%; max:
Jenkins: 99.38%) of skipped commits are correctly skipped non-
defective commits leading to 42.27% (min: Airflow: 32.72%;
max: Kafka: 60.50%) of the non-defective commits being
correctly identified and, thus, on average 18.82% (min: Angular:
4.19%; max: Kafka: 36.54%) of the avoidable effort is saved.
Setting a trliabitiy Of 0.1, in all projects, 99% of all defective
commits are identified while still being able to save reviews
for, on average, 1219 non-defective commits.

In conclusion, the promise of JIT defect prediction lies
in its effectiveness and the ability to directly integrate it
into the development workflow. Using the presented approach
and setting a telaniliy can save effort under the condition

of effectiveness (high recall). When considering current best
practices, it is obvious that every TN means a reduction in
developer workload. A trade-off between effectiveness and
efficiency is visible and must be factored in depending on the
specific context. Further research is needed to understand the
relations in a broader context.

VI. DISCUSSION

This section discusses further limitations and assumptions
that should be considered in future studies.

Presentation of results: One of the significant challenges
for applicable JIT defect prediction is the potential backlash
from developers when faced with incorrect predictions. As
mentioned by Kochhar et al. [35], false predictions can
lead to developer frustration, potentially diminishing trust.
Therefore, the presentation of predictions is crucial. Instead
of overwhelming developers with a barrage of warnings, JIT
defect prediction tools might be more effective if they point out
commits that are likely safe to ignore. This way, developers can
prioritize review efforts without getting distracted. Furthermore,
integrating explainability techniques, as, for example, done
by Khanan et al. [44]], can enhance the acceptance. When
developers can understand the reasoning behind a prediction,
they are more likely to trust and act upon it.

Notion of effort: The approximation of effort as the number
of changed lines is a popular measure used in many software
engineering studies. The rationale seems straightforward: the
more changed lines of code, the higher the effort needed from
the developer. However, this definition may not capture the
full spectrum of developer effort. For instance, a complex
algorithmic change might require a high cognitive load but
might only result in a few changed lines. Conversely, simple
refactoring or boilerplate code can change a large number of
lines with relatively low reviewing effort. Another dimension
is the latent effort associated with defective commits. When
defects are not detected early and linger until later development
stages, the cost of the investigation and rectification process
increases rapidly [45]]. For example, a defect detected during
production puts pressure on the development team due to the
operational urgency and demands effort to trace back and
comprehend the origin, especially if a significant time has
elapsed since its introduction. More research is needed to fully
understand the intricate nature of the needed effort.

Review process: Current JIT defect prediction approaches
assume that every review finds all defective code. Yet, it is
more likely that the success of a review is influenced by its
thoroughness. A shallow code review might miss subtle defects,



whereas a thorough, effort-intense review should have a higher
likelihood of uncovering defects. This trade-off is central to
understanding the actual effort spent in the review process. In
JIT defect prediction, review thoroughness varies. No review
means no chance of finding defects. A standard review has
a variable chance of identifying mistakes, which might shift
if guided by predictions. Apart from review thoroughness,
the reviewer’s experience and code complexity also influence
review efficacy. These factors are crucial for understanding
how defect prediction methods perform in practical situations
and should be considered in future research.

VII. THREATS TO VALIDITY

Threats to internal validity may arise due to faulty as-
sumptions in the evaluation process. We carefully evaluated
the data set and its characteristics to ensure that the shown
limitations are valid for all projects. We propose to apply
well-established metrics and use standard libraries to compute
them. We publish all code and evaluations in the supplementary
material to provide reproducible results and to mitigate this
risk.

Threats to external validity relate to the generalizability of
the study results. We used six open-source projects, covering
five years of development and varying in size. The projects
belong to different application domains and contain different
programming languages [36]. Nonetheless, the data set may be
incomplete. This may affect the accuracy of our experimental
results. Furthermore, we evaluate our proposed approach on
a limited number of six projects. Since the data is collected
from open-source projects, we are not able to provide insights
into the transferability of the results to industrial projects. To
generalize the results, further studies analyzing more projects
and investigating the application in industrial contexts are
needed.

Threats to construct validity refer to the soundness and
suitability of our study design and evaluation. The time-
dependent validation of models leads to data set splits that are
not randomized to be more realistic. We evaluate all scenarios
for all projects and compare their results in order to provide
a complete picture. However, due to the splitting of the data
set, characteristics of commits may determine the results of
singular time periods more directly.

VIII. CONCLUSION

In this study, we discussed the limitations of current effort-
aware JIT defect prediction and made a case for focusing on a
more realistic evaluation setting. We described key metrics to
evaluate the effort-saving potential and introduced reliability
approaches to adapt model predictions. We evaluated the
approaches in the context of six projects from a publicly
available data set.

We found that a combination of recall, negative predictive
value, and specificity, as well as effort-based specificity,
are valid measures to evaluate the effort-saving potential of
JIT defect prediction models. Moreover, adapting the model
threshold is a viable option to make defect prediction more
applicable in practice by ensuring high levels of recall while

still helping developers save effort. However, the threshold
needs to be set and adapted manually depending on the project
and its environment. We evaluated different reliability levels
that can be used as a first reference to set a suitable threshold.

In summary, this work describes a shift in perspective to
enable applicable JIT defect prediction that is effective and
efficient and contributes to the ongoing exploration of JIT defect
prediction approaches. In future, the results of this study need
to be evaluated on a larger set of study projects and validated
in industry. Moreover, the evaluation of JIT defect prediction
studies should focus on closely mirroring realistic software
development processes. In this context, the considerations set
out in section can provide valuable impetus.
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