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Abstract—Medical Visual Question Answering (VQA-Med) 
is a challenging task that involves answering clinical 
questions related to medical images. However, most 
current VQA-Med methods ignore the causal correlation 
between specific lesion or abnormality features and 
answers, while also failing to provide accurate explanations 
for their decisions. Moreover, VQA-Med methods suffer 
from the common language bias problem in generic VQA. 
To explore the interpretability and language bias of VQA-
Med, this paper proposes a novel CCIS-MVQA model for 
VQA-Med based on a counterfactual causal-effect 
intervention strategy. This model consists of the modified 
ResNet for image feature extraction, a GloVe decoder for 
question feature extraction, a bilinear attention network for 
vision and language feature fusion, and an interpretability 
generator for producing the interpretability and prediction 
results. The proposed CCIS-MVQA introduces a layer-wise 
relevance propagation method to automatically generate 
counterfactual samples for improving interpretability and 
alleviating language bias. Additionally, CCIS-MVQA applies 
counterfactual causal reasoning throughout the training 
phase to enhance interpretability and generalization. 
Extensive experiments on three benchmark datasets show 
that the proposed CCIS-MVQA model outperforms the 
state-of-the-art methods. Enough visualization results are 
produced to analyze the interpretability and debasing 
performance of CCIS-MVQA. 

    

 
Index Terms—Medical visual question answering, 

interpretability, counterfactual, causal-effect intervention.  

I. INTRODUCTION 

DVANCEMENTS in deep learning have successfully 

achieved state-of-the-art (SOTA) results in computer 

vision, natural language processing, and information retrieval. 

In the medical industry, deep learning technology has facilitated 

many significant applications. For example, several compelling 

studies have emerged in natural language processing using 

patient clinical records for predictive analysis [1], [2].  

Visual Question Answering (VQA) [3] is a complex task in 

computer vision and natural language processing that aims to 

answer natural language questions relevant to given images. In 

the generic domain, deep learning has achieved great success 
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with VQA. The migration of generic VQA to the medical field 

gives rise to a new downstream task: Medical Visual Question 

Answering (VQA-Med). In the VQA-Med task, radiological 

scans of the patients (X-ray, Magnetic Resonance Imaging 

(MRI), and CT) are used instead of standard images in the 

generic domain, accompanied by clinically relevant question-

answer (QA) pairs. VQA-Med technology can assist doctors in 

improving the diagnosis efficiency and help patients understand 

their conditions. However, VQA-Med is challenging as it 

demands an in-depth understanding and high-level interactions 

with professional medical images and textual QA pairs to 

generate reasonable and credible answers. 

Early methods in the field of VQA-Med have attempted to 

fine-tune the deep networks by using existing VQA models on 

generic VQA datasets. For example, Bansal et al. [4] used a 

ResNet image embedding and word embedding from a pre-

trained Word2Vec model on the PubMed dataset to generate 

descriptions of abnormalities in the images. Vu et al. [5] used a 

pre-trained ResNet-152 model on the ImageNet dataset to 

extract image features and employed the pre-trained 

bidirectional encoder representations from transformers 

(BERT) to extract question features. They also proposed a VQA 

approach that leveraged a bilinear model to aggregate and 

synthesize the extracted image and question features. However, 

these methods only used low-level features of both structural 

questions and non-structural images, ignoring the causal 

correlation between specific lesion or abnormality features and 

answers in medical images. This approach also fails to provide 

appropriate explanations for predictions that are understandable 

to humans. Interpretability is critical to producing convincing 

answers for the reliability and trustworthiness of VQA-Med to 

help doctors understand patients comprehensively and make 

correct and appropriate clinical decisions. Furthermore, most 

VQA-Med methods suffer from the common language bias 

problem found in generic VQA, as they often rely on spurious 

textual cues to make decisions rather than engage in multi-modal 

reasoning. The linguistic prior process of training QA pairs in 

unbalanced training datasets also seriously affects these models. 

Capturing causal correlation between image and QA pairs is 

crucial to enhance features from image models and achieve 
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interpretability and good debiasing performance for VQA. In 

recent years, counterfactual reasoning has become one of the 

promising pipelines for interpretability in explainable artificial 

intelligence [6]. Counterfactual reasoning provides an 

interpretation at the level of human knowledge by answering 

the question of “What does X have to change to alter the 

prediction from Y to Y’?” and explaining a model’s decision in 

hypothetical scenarios. From a perspective of causality [7], 

humans learn by actively interacting with the environment and 

infer causal dependencies between events by intervening and 

observing changes in the outcomes. Therefore, causal 

relationships can affect the final target results through human 

intervention [8]. According to this premise, Wang et al. [9] 

proposed a causal-effect intervention strategy (CIS) based on 

interpretable vision models to proactively guard against image 

features with no causal relevance for improving image 

classification performance and facilitating model 

interpretability. Niu et al. [10] proposed a counterfactual 

inference framework (CF-VQA) to capture the language bias as 

a direct causal effect of questions on answers and to reduce the 

language bias in VQA. Chen et al. [11] presented a more 

sophisticated counterfactual samples synthesizing training 

scheme to enhance the visual interpretability and question 

sensitivity of VQA. Inspired by this philosophical concept of 

counterfactual reasoning [8], image classification [9], and the 

generic VQA [10], [11], this study aims at constructing a novel 

counterfactual causal-effect intervention strategy (CCIS) 

framework for VQA-Med to explore the problems of 

interpretability and language bias of VQA-Med. Through 

contrastive language-image pre-training (CLIP), we apply the 

modified ResNet and transformer decoder to capture low-level 

image features and question features, respectively. Then, we 

fuse the vision and language features using a bilinear attention 

network (BAN) to obtain high-level global features. Building 

upon this, we introduce a layer-wise relevance propagation 

(LRP) method to automatically generate counterfactual image 

training samples that enhance the model’s interpretability and 

alleviate the language bias from the VQA-Med model and 

datasets. Unlike other methods of generating counterfactual 

samples with artificially specified rules, our proposed causal 

intervention strategy can simultaneously produce 

interpretability and prediction results. Throughout the training 

phase, we apply the structural causal model (SCM) [8] based on 

counterfactual causal reasoning to further enhance the 

interpretability and prediction performance of the VQA-Med 

model. This study provides three-fold contributions. 

First, we propose a CCIS framework for VQA-Med (CCIS-

MVQA) to explore the interpretability and language bias of 

VQA-Med, which integrates an interpretability generator into 

its architecture to provide interpretations and explanations for 

its predictions. 

Second, we develop layer-wise relevance propagation to 

automatically generate counterfactual image samples and 

construct a CCIS strategy, which can simultaneously produce 

interpretability and prediction results. 

Third, we perform extensive experiments on benchmark 

datasets. Our proposed CCIS-MVQA achieves new SOTA 

results compared with the existing methods in VQA-Med fields. 

Additionally, we provide sufficient visualization results to 

analyze the interpretability and debasing performance. 

II.  RELATED WORKS 

This paper explores the problems of interpretability and 

language bias in VQA-Med. Here we begin by discussing 

language bias and reviewing related to the VQA-Med 

interpretability. 

In the VQA model, language bias refers to giving the 

predicted answer based on spurious linguistic correlations 

between questions and training data without comprehensively 

reasoning multi-modal information from the images and texts 

because of an unbalanced training dataset [10], [12]. Most 

current solutions to reduce language bias in VQA fall into three 

categories: enhanced visual grounding [13], [14], weakened 

linguistic priors [10], [12], and explicit/implicit data balancing 

[11], [15]. CF-VQA [10] and RUBi [12] are two well-known 

VQA debias methods in generic VQA. CF-VQA [10] is a 

counterfactual inference framework for capturing language 

bias. However, the counterfactual samples were synthesized 

according to artificially specified rules. Cadene et al. [12] 

proposed reducing unimodal biases for VQA (RUBi). It used 

additional QA models to capture language bias, whereas the QA 

models were not used in the test stage. 

Saliency mapping is a popular method for interpreting deep 

learning models for the interpretability of generic VQA. Wang 

et al. [9] have presented a proactive pseudo-intervention 

strategy that proactively guards against image features with no 

causal relevance. Zhang et al. [16] have proposed generating a 

significant heat map to display the image regions related to the 

answers. However, Fernandez et al. [17] pointed out that the 

above methods did not adequately explain VQA decision-

making. Teney et al. [18] have introduced masking the overlap 

between the boundary box and the artificially annotated 

attention map to enhance visual interpretability. Pan et al. [19] 

have also proposed generating counterfactual images by editing 

the original images. However, due to the complexity of the 

questions in VQA-Med, this framework can only be used for 

color-related questions. Most existing research uses feature-

based post-hoc interpretation to describe the decision-making 

process they want to explain. Existing VQA-Med models tend 

to employ some advanced methods used in generic VQA, such 

as multi-modal compact bilinear [20], stacked attention 

networks [21], bilinear attention networks [22], multi-modal 

factorized bilinear [23], and multi-modal factorized high-order 

[24]. 

Various approaches have been developed to address the 

challenge of limited labeled data in the VQA-Med task. Nguyen 

et al. [25] proposed a mixture of enhanced visual features 

(MEVF) model that uses meta-learning to adapt to VQA-Med 

tasks with limited labeled data, making the model effectively 

learn meta-annotations [26]. Liu et al. [27] introduced a 

contrastive pre-training and representation distillation (CPRD) 

to train teacher models using many unlabeled radiological 

images. Then, these models were transferred into a lightweight 

student model for fine-tuning radiological images of VQA-Med 
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datasets. Another study [28] proposed a bi-branched model 

based on parallel networks and image retrieval for VQA-Med 

(BPI-MVQA) to realize complementary advantages in image 

sequence feature extraction, spatial feature extraction, and 

multi-modal fusion, forcing the VQA-Med to consider the 

feature applicability to specific image-understanding tasks [29]. 

Various proposals have been used to simplify the complex 

task of medical VQA. Ren et al. [30] introduced a classification 

and generative model for VQA-Med (CGMVQA), which uses 

a multi-head self-attention mechanism to break the complex 

medical VQA task into multiple simple tasks. Zhan et al. [31] 

proposed a conditional reasoning framework for various VQA-

Med tasks to automatically learn practical reasoning skills for 

various VQA-Med tasks. To emphasize question features, Vu 

et al. [32] developed a question-centric multi-modal low-rank 

bilinear (QC-MLB) model for VQA-Med to fuse image and 

question features by enforcing high adherence to the query 

sentence. Zhang et al. [33] and Pan et al. [34] improved the 

reasoning ability of different models using attention 

mechanisms to realize the feature alignment based on text and 

image and enhance the semantic alignment ability of cross-

modal features. Yu et al. [35] proposed a question-guided 

feature pyramid network (QFPN) for VQA-Med, using high 

resolution of low-level features and rich semantic information 

of high-level features to capture multi-scale information of 

medical images. 

Some studies have explored question features in the VQA-

Med method. Cong et al. [36] proposed a technique called 

Caption-Aware, which used caption-sensing to understand the 

abstract information of image content and clinical diagnosis 

from many medical images. Li et al. [37] introduced a bi-level 

representation learning model for VQA-Med using sentence- 

and word-level reasoning. Huang et al. [38] proposed a VQA-

Med network based on medical knowledge to learn the disease-

related and relation-related embedding according to the 

structural features of a medical knowledge graph. Cong et al. 

[39] developed an anomaly-oriented model (AOM) based on 

weakly supervised anomaly localization information using 

generative adversarial networks to generate healthy images and 

anomaly localization result maps. This paper also uses 

abnormal location information and irrelevant information in 

input images. However, we still use causal correlation to reason 

QA pairs effectively. Additionally, we quantify the model’s 

debias ability. 

Existing works [31] in VQA-Med primarily apply advanced 

methods in generic VQA. However, medical data image pattern 

and linguistic style differ significantly from the generic domain. 

Compared to general VQA, VQA-Med task requires higher-

level reasoning skills such as locating specific lesions or 

evaluating if the size of an organ is expected relative to prior 

knowledge. Additionally, questions in VQA-Med must be more 

realistic and specific, making it harder to collect or generate 

these questions [39]. As a result, it is complicated to obtain 

well-annotated datasets for training VQA-Med systems. Due to 

these differences between generic VQA and VQA-Med, simply 

generic VQA methods and fine-tuning limited medical data 

provide little benefit [31]. 

III.  METHOD 

The VQA-Med task is a multi-class classification problem, 

and we consider an image-question pair  ,V Q , where Q 

represents a medical-related question, and V is a medical image. 

A dataset  , , iN

i i iD v q a  consists of triplets of images iv V , 

questions iq Q , and candidate answers ia A . VQA-Med can 

be expressed as a question-and-answer model to find the answer 

with the highest probability from candidate answers as: 

 ˆ arg max | ,
i

i i i
a

a P a v q


 ,                       (1) 

where   is the parameter in question answering model.   

As shown in Fig. 1, the proposed CCIS-MVQA consists of 

four main components. 

1) Image feature extraction uses modified ResNet with 

convolutional neural network to capture low-level visual 

features. 

2) Question feature extraction uses GloVe and transformer 

decoder to capture contextual information. 

3) Bilinear attention network fuses the vision and language 

features for high-level global features. 

4) Interpretability generator applies CCIS and causal 

reasoning to enhance the model’s interpretability and 

generalization. The image encoder uses modified ResNet50 for 

the backbone of the CCIS-MVQA model. However, the text 

encoder uses a transformer and GloVe for the same model, 

where the transformer pre-trained the network using contrastive 

language-image pre-training CLIP [40], [41], and GloVe is for 

fine-tuning. 

A. Image Feature Extraction 

This paper uses modified ResNet50 to extract and enhance 

image features, especially fine-grained information. We fine-

tune the modified ResNet50 [42] based on the original CLIP 

model [40], [41] pre-trained on a public domain image-text 

dataset. We have also conducted this fine-tuned process using 

medical image-text pairs on the ROCO dataset [43], which 

contains various image forms (X-rays, ultrasounds, and MRIs) 

for almost all body parts. Moreover, each image has 

corresponding descriptive text to provide explanatory 

information. 

Given N image-text pairs, we train CLIP to classify ×N N  

image-text combinations for CLIP fine-tuning task and VQA-

Med. In this process, CLIP learns image and text embedding 

features. It optimizes the model parameters by maximizing the 

cosine similarity of the image and text embedding during the 

gradient calculation phase. For each batch, the expected 

prediction is in a two-dimensional matrix, and the number of 

false image-text pairs is N N2 . The similarity score is 

optimized using a symmetric cross-entropy loss function.  

The modified ResNet50 differs from the original ResNet50. 

The input stem of the modified ResNet50 replaces one 

convolutional layer of ResNet50 with three convolutional 

layers and replaces the maxpool layer with the global average 

pool layer. Additionally, the downsampling block in the 

modified ResNet50 replaces the first convolutions layer (1 × 1, 
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s = 2) with (1 × 1, s = 1). Finally, the modified ResNet50 

replaces the last linear classification header with a self-attention 

layer and calculates the vectors through a linear mapping 

matrix. Based on the model, we reshape an image I to match 

ResNet50 (224, 224, 3), replace the global average pooling 

layer with an attention pooling mechanism, and retain only the 

output of the last average pooling layer as image features IX  

as: 

ResNet50( )IX I .                              (2) 

Attention pooling is implemented as a single layer of a 

“Transformer-style” multi-head attention mechanism, where 

the query is conditioned on the global average pooling 

representation as: 

softmax

  

 
  

 

， ，Q I K I V I

T

Q W X K W X V W X

QK
X V

d

,                       (3) 

where WQ, WK, and WV are attention mapping weights of 
IX . 

 
Fig. 1. The proposed CCIS-MVQA framework based on counterfactual causal-effect intervention strategy  
 

B. Question Feature Extraction 

The process of feature extraction for questions involves two 

stages: the pre-training stage and the fine-tuning stage. We use 

a transformer decoder to extract question features during the 

pre-trained stage. As a base size, the question feature network 

is a 12-layer attention network of 512 widths and 8 heads. The 

text sequence is marked with [SOS] and [EOS] and activated at 

the highest level of the transformer as a feature representation 

of questions. Subsequently, text features are layered, 

normalized, and linearly projected into embedding space. In the 

fine-tuning stage, questions are encoded by GloVe to obtain 

text vectors qM d
Q , where M is the length of the text 

sequence, and qd  is the dimension of Q . However, the 

transformer in CLIP trained with 400M image-text pairs should 

be better than Glove. This paper used the CLIP to enhance the 

image modality. Therefore, the Glove is deliberately used to 

save computing time and indirectly strengthen the image 

modality to weaken the impact of language modality. 

C. Multimodal Fusion 

In the feature fusion stage, the modified ResNet50 pre-

trained by CLIP is used as an image feature extractor to obtain 

fine-grained image features vN d
V , where N is the image 

sequence’s length and 
vd  is the dimension of V . GloVe 

encodes text features to obtain text vectors qM d
Q , where 

M is the length of the text sequence, and qd  is the dimension of 

Q . The obtained image features and text features are fused 

through bilinear attention network as: 

     
K

T T
T T T T

v q Vi i
i

  If V W Q W V W ,           (4) 

where Kf  is the cross-modal vector; K is the dimension of f , 

N

v W , M

q W  is a learnable weight parameter matrix, N 

and M are the dimensions of the matrix, and
v qd d

  is a 

bilinear attention map used to fuse the image and text features 

as: 

   softmax T T T

V Q I p V W W Q ,          (5) 

where vdI  is used to change the shape of bilinear attention 

maps;
K 1

p ,
N K

V

W , and M K

Q

W  are weight parameter 

matrixes of bilinear attention network, respectively. Afterward, 

a multilayer perceptron classifier (MLP) completes answer 

predictions. 

D. Counterfactual Causal-effect Intervention Strategy 

When people make causal reasoning on the surrounding 

events, they often have the retrospective counterfactual 

thinking that “What would have happened had we acted 

differently?” [7], [8]. Answering a counterfactual question 

allows us to learn from history and the experience of others. As 

a unique expression to causal reasoning [8], counterfactual 

explanations can provide a more sophisticated way to increase 

the interpretability of VQA model [11], [17]. 

In one study [8], Pearl divided causality into three levels: 

Association, Intervention, and Counterfactuals from bottom to 

top. At the bottom level, the Association is to find correlations 
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between variables from the observed data. The second level 

Intervention shows that when changing X, whether Y will 

change with X. At the top level, Counterfactuals indicate that if 

we want Y to undergo a specific change, we can achieve it by 

changing X. As a result, we aim to study the interpretability of 

the VQA-Med model at the Intervention and Counterfactuals 

rungs and propose a new CCIS. 

(1) Interventions 

A true causality can be intervened to influence the outcomes. 

Formally, intervention can be explained with do-notation [7] as:  

    | |P Y do x P Y X x  ,                 (6) 

where we identify Y as the answer and X as the image. In (6), 

variable X is artificially forced to take a value x, but otherwise, 

the remaining variables are stimulated according to the original 

process of generating data to study the changes in the 

distribution of Y. 

However, performing an interventional study in reality, i.e., 

randomized control trials, intentionally blocking non-causal 

associations is often not feasible due to cost, time, and ethics 

[6], [9]. This study applies synthetic interventions to uncover 

the underlying causal features from observational data by 

automatically editing image X and its corresponding label Y to 

encourage the VQA-Med model and explore potential causal 

interpretability. 

(2) Counterfactuals 

A counterfactual statement might be interpreted as conveying 

a set of predictions under a well-defined set of conditions that 

prevail in the factual part of the statement [7]. More precisely, 

counterfactuals have expressions of the type  XP Y | X ,Y , 

which stand for “the probability that event γ = Y would be 

observed had χ been X, given that we actually observed X to be 

X  and Y to be Y ” [44]. Fig. 2 shows a counterfactual 

interpretation for VQA-Med by intervention to mask a critical 

region of the input image and thus change the answer 

distribution. 
Question: Is there any abnormality? 

   
Prediction: Yes Prediction: No Prediction: Yes 

(a) Before intervention (b) After intervention 

Fig. 2. Factual and counterfactual interpretations on VQA-Med dataset. 

 

Before intervention in Fig. 2(a), the VQA-Med model receives 

a complete anomaly image and predicts the correct answer 

according to the abnormal location information, indicating an 

abnormal lesion in the image. The answer to “Is there any 

abnormality?” should be “Yes”. After intervention in Fig. 2(b), 

if the abnormal lesion parts in the image are masked, VQA-Med 

model will not predict the correct answer, i.e., the answer should 

change from “Yes” to “No” (left); even if other parts of the 

image other than the abnormal lesion parts are masked, the 

answer should still be “Yes” (right). 

(3) Structural Causal Model 

The structural Causal Model (SCM) [8] defines the data-

generating process and the distribution of the observations. For 

causal-effect reasoning, we apply the SCM model [8] to 

elaborate causal relationships between the original sample X , 

counterfactual samples X  and X , and answer labels Y , 

respectively. Fig. 3 clearly shows how the original sample X  

and counterfactual samples X  and X use a reasoning path to 

reason about causal relationship with the answer label Y. 
 
Question: What’s the primary abnormality?   

Answer: Vascular malformation 

    
(a) X (b) X  (c) X  (d) SCM model 

Fig. 3. Causal graph model based on counterfactual samples. (a) Original 
image X; Answer Y: Vascular malformation. (b) Counterfactual image 

X ; Answer Y: NOT Vascular malformation. (c) Counterfactual image 

X ; Answer Y: Vascular malformation. (d) SCM model. 

 

Based on the original sample X, we perform a pixel-wise mask 

on X to generate counterfactual images X  and X . 

Counterfactual samples X  are generated by masking the critical 

parts of the original image, in which these covered objects are 

essential and casually correlated to correctly answering a 

question, e.g., the gray pixel masks on the blood vessels region 

in Fig. 3(b). Counterfactual samples X  are introduced as the 

adversarial control group and may not adversely affect the 

correctly answering the question. X is generated by masking 

the non-critical parts of the original image, in which these 

covered objects are not casually correlated to correctly 

answering a question, e.g., the gray pixel masks at the edges of 

the image other than the blood vessels in Fig.3(c). Y is the 

ground-truth answer. Then, the counterfactual images and 

original questions compose a new visual image-question (VQ) 

pair. 

Given a VQ pair containing counterfactual image samples, a 

standard VQA training sample triplet still needs the 

corresponding ground-truth answers. For X and X , the ground-

truth answer already exists in the dataset. The counterfactual 

image X , which masks the critical parts of the original image, 

will affect the prediction answer, so the ground-truth answer 

must be different from the original one. We introduce a layer-

wise relevance propagation technique to automatically generate 

counterfactual samples, aiming to avoid expensive manual 

annotations. 

As shown in Fig. 3(d), a connection represents the causal 

relationship between two nodes: cause effect. There are three 

causal-effect reasoning paths in Fig. 3(d). (i) X Y , given a 

VQ pair that contains the original image, the VQA-Med model 

can predict a correct answer based on the critical information in 

the image if the model is accurate enough. In this case, the 

VQA-Med model can capture the direct causal effect of the 

image. (ii)  X X Y  , given a VQ pair that contains a 

counterfactual image with non-critical parts masked, the VQA-
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Med model can still predict a correct answer based on the 

critical parts of the image if the model is accurate enough. (iii) 

 NOTX X Y  , given a VQ pair that contains a counterfactual 

image with critical parts masked, VQA-Med should not predict 

the correct answer even if it is accurate enough. 

Fig. 3 clearly shows that regardless of whether the image pixel 

is related to the prediction, using counterfactual samples, the 

causal path in the SCM model can help the VQA-Med model 

correlate original samples X with answer labels Y. According to 

the causal-effect reasoning paths of SCM models in Fig. 3, this 

paper introduces a CCIS to eliminate irrelevant causal 

relationships so that the VQA-Med model can focus on the 

critical objects or regions with causal correlations in the input 

image. Adding an intervention strategy for the image modal 

into the CCIS-MVQA model can improve interpretability and 

alleviate the deviation brought by the language modal. On this 

basis, CCIS-MVQA constructs a loss function to train and 

optimize model parameters, which will be discussed in detail 

later. 

(4) Counterfactual sample generation 

We introduce a layer-wise relevance propagation (LRP) 

method [45], [46] for generating counterfactual samples. The 

contribution of each pixel in the image to model predictions is 

calculated through the layer-wise relevance backpropagation in 

the image feature extraction network. According to the causal 

relationship, the region with a larger contribution value can 

better determine the prediction answer, called the causal 

saliency map [9]. Therefore, counterfactual samples X  and X  

can be obtained by masking the pixels with largest or smallest 

contribution values. 

The core idea of LRP is to decompose the target function into 

a set of correlation scores and then redistribute them to the 

neurons in the previous layer, as shown in the interpretability 

generator module on the upper right of Fig. 1. The rule of 

correlation scores Rj propagating from the (l+1)-th layer to the 

previous l-th layer is in (7). 

   i ijl l

i j

j i iji

a w
R R

a w





1

,                        (7) 

where i and j are the neuron nodes of the adjacent layer, 

respectively; 
( )

i

lR  is the correlation score of the i-th neuron in 

the l-th layer, and ( )

j

1lR  is the correlation score of the j-th neuron 

in the (l+1)-th layer, respectively; Σ is the sum of the correlation 

scores of all nodes; ia  is the attribute of the i-th node; wij is the 

weight from the i-th neuron to the j-th neuron. i ija w  quantifies 

the contribution of node i to node j in the forward propagation 

process. The denominator in (7) ensures the conservation of 

propagation, indicating that the information received by the 

neurons must be reallocated equally to the next layer. 

As shown in Fig. 1, the interpretability generator obtains the 

causal saliency map ( )is x  of the prediction answer using LRP, 

giving an input image X and obtaining the image feature ix  by 

image feature extraction. We mask the critical information 

(image area with largest contribution value) for counterfactual 

images as: 

  i i i ix x F s x x  ,                        (8) 

where ( )F   is a mask function as: 

  
   

1

1 exp
i

i

F s x
k s x 


  

,            (9) 

where k is a threshold parameter for controlling the mask range; 

 is a scaling parameter for specifying the mask color;  0 . 

By selecting salient pixels, parameter k is designed to 

encourage the causal parts of each image to be as small as 

possible to avoid possible degeneration solutions of the 

objective function. 

In addition, we should avoid interference resulting from the 

intervention strategy because the VQA-Med model does not 

learn to capture causal correlation but learns the intervention 

operation (masking image). For example, a VQA-Med model 

can learn to change its predictions when it detects that an input 

image is masked regardless of whether the image lacks causal 

features, which may harm the predicted outcomes. Therefore, 

an adversarial control group, i.e., a counterfactual sample x , is 

introduced to mask the non-critical parts of the original images. 

The counterfactual sample x is generated as: 

  i i i i ix x F x s x x   .                 (10) 

Notably, (10) may lead to degenerate solutions; that is, any 

counterfactual sample generated by a causal salient map 

satisfying causal-effect correlation is an effective mask 

regardless of the covered area size. For example, covering the 

whole image or only covering a lesion removes the causal-

effect correlation between the critical region of the image and 

the answer. This is detrimental to alleviating model language 

bias and improving model interpretability. The k in (9) is used 

to control mask range to avoid this issue, which encourages the 

masked parts to be only a small part of the image. 

(5) Model training and optimization 

Counterfactual samples are integrated into the training 

process of the CCIS-MVQA model, as shown in Fig. 4. 

According to the causal-effect reasoning paths described in 

SCM models in Fig. 3, CCIS-MVQA constructs a loss function 

to participate in training and optimizing model parameters at 

each training epoch. Our loss functions are as follows: 

   1 , , ;i i ix qL y f   ,                          (11) 

   2 , , ;i ii x q yL f  ,                           (12) 

   3 , , ;i i ix qL y f  ,                           (13) 

1 2 3

i i i iLoos L L L   ,                              (14) 

where f  is the prediction function of the VQA-Med model;   

is the model parameter; y is the ground-truth answer, y  

denotes a flip of ground-truth answer, i.e., 

   , ; , ;i ix y f x y f    . In this way, we do not need to add 

additional ground-truth answers. 

As shown in Fig. 4, CCIS-MVQA applies CCIS to integrate 

counterfactual samples into the model training process and 

constructs loss functions to participate in the model parameters 

optimization. According to the CCIS causality, CCIS-MVQA 
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will predict a wrong answer when using counterfactual samples

x and predict a right answer when using counterfactual 

samples x . As shown in Fig. 4, at each training epoch i, the 

interpretability generator in CCIS-MVQA can update the model 

parameters and network weights according to the loss function 

and automatically generate counterfactual samples more 

causally correlated with the prediction label Y. The updated 

parameters will be further optimized in the next training epoch 

i+1. 

 
Fig. 4 Training and optimization process of CCIS-MVQA at epoch i. 

 

After updating weight parameters at each training epoch, 

CCIS-MVQA can further generate more accurate 

counterfactual samples to improve causal reasoning and 

prediction performance continuously. This approach achieves a 

benign causal cycle, which captures the causal-effect 

interpretability by inferring the critical objects or regions in the 

image closely causally related to the prediction outcomes and 

enhances the explainability of the CCIS-MVQA model. This is 

also a self-explanatory approach in which CCIS-MVQA 

integrates the interpretability generator module into its 

architecture to explain its predictions. 

IV. EXPERIMENTS AND RESULTS ANALYSIS 

A. Datasets 

This paper evaluates the proposed CCIS-MVQA model using 

three publicly available VQA-Med datasets: VQA-Med-2019 

[47], VQA-RAD [48], and SLAKE [49]. In general, most 

images in the datasets match multiple pairs of questions and 

answers, which are divided into two types: closed-ended and 

open-ended. Closed-ended questions only answer “Yes” or “No” 

and open-ended questions are answered in free-form text 

B. Implementation details 

The proposed CCIS-MVQA model is implemented with the 

PyTorch library. The medical image model is trained from 

random initialization with the Adam optimizer. The initial 

learning rate is 0.001, the momentum is 0.05, and the batch size 

is 16. We create 300-D GloVe embeddings for question 

embedding. For the transformer encoder, the hidden size is

16 16 3  ; the number of heads is 8, the batch size is 16, the 

number of epochs is 200, and the dropout rate is 0.5 for all 

layers. 

C. Evaluation of the overall performance 

We compare our CCIS-MVQA model with some SOTA 

methods: MEVF [25], CPRD [27], BPI-MVQA [28], 

CGMVQA [30], QC-MLB [32], QFPN [35], Caption-Aware 

[36], AOM [39], and Optimal Model [50]. We have reviewed 

these models in Section II. 

This paper selects accuracy (i.e., Acc.) as the evaluation 

metric, the percentage of correctly predicted instances to the 

total predicted cases. This evaluation standard is the simplest 

and strictest, a new metric introduced in the ImageCLEF 2019 

VQA-Med dataset [47], and strictly considers the exact 

matching of the predicted answer and the ground truth answer. 

Table I shows the evaluation results. The best results are 

highlighted with bold values in each column. The superscript 

values of our CCIS-MVQA are the Mean Square Error (MSE) 

variance estimates for the accuracies.  

TABLE I 

QUANTITATIVE VERIFICATION RESULTS OF MODEL OVERALL PERFORMANCE (Acc. %) 

Model 
 VQA-RAD  SLAKE  

 Opened Closed Overall  Opened Closed Overall 

MEVF + BAN [25] (2019)  43.90 75.10 62.60  77.80 79.80 78.60 

MEVF + SAN [25] (2019)  40.70 74.10 60.80  75.30 78.40 76.50 

CPRD + BAN [27] (2021)  52.50 77.90 67.80  79.50 83.40 81.10 

Caption-Aware [36](2022)  65.40 77.90 72.00  79.60 86.10 82.20 

CCIS-MVQA (Ours)  68.78±0.23 79.24±0.16 75.06  80.12±0.11 86.72±0.07 84.08 

Model 
 VQA-Med-2019  

 Modality Plane Organ Abnormality All 

CGMVQA [30] (2020)  81.92 86.47 78.47 4.47 62.83 

QC-MLB [32] (2020)  82.45 73.17 70.94 4.85 57.85 

Optimal Model [50] (2022)  52.02 62.15 48.06 6.08 42.08 

BPI-MVQA [28](2022)  84.83 84.80 72.81 19.20 65.41 

AOM [39](2022)  55.15 86.75 68.55 - - 

QFPN [35](2023)  - - - - 63.80 

CCIS-MVQA (Ours)  88.78±0.38 88.16±0.21 84.18±0.14 12.35±0.40 68.37 
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In Table I, our CCIS-MVQA achieves 75.06% and 84.08% 

overall accuracy on the VQA-RAD and SLAKE, respectively. 

Compared with the best baseline Caption-Aware [36], CCIS-

MVQA improves the overall accuracy by 3.06% and 2.88%, 

respectively. For the open and closed questions, CCIS-MVQA 

obtains the best results. 

In the VQA-Med-2019 database, our CCIS-MVQA has 

achieved more competitive improvement and obtained SOTA 

results with a 68.37% average accuracy. Compared with the 

second-best baseline BPI-MVQA [28], our CCIS-MVQA 

increases average accuracy by 2.96%. Our CCIS-MVQA also 

obtains impressive results in the specific question categories 

except in the “Abnormality” category. Our CCIS-MVQA 

surpasses all models except the best BPI-MVQA in the 

abnormality category [28]. The “Abnormality” question type in 

VQA-Med-2019 presents a significant barrier to reasoning the 

answer because it contains more than 1000 categories of 

abnormality answers. BPI-MVQA [28] designed an individual 

branch for image retrieval to predict the irregular, open-ended 

‘Abnormality’ type questions. 

D. Interpretability evaluation: 

This paper adopts the proposed evaluation scheme [51] to 

quantitatively evaluate the causal saliency map’s causal 

correlation. As in [51], we compute an estimate e of feature 

importance for every input pixel in the dataset using the LRP 

method, and then rank each e into an ordered set 
1{ }o N

i ie 
. For 

the top k fraction of the ordered set, we replace the 

corresponding pixels in the raw image with the grayscale value 

255 to generate new datasets at different degradation levels k = 

[0, 10, 20, 30, and 40], where k is a mask range of the image in 

(9). Then, the CCIS-MVQA model is evaluated on the new test 

data. 

Table II shows the decline in prediction accuracy after 

removing critical pixels. As the k increases, the prediction 

accuracy of the model decreases gradually, indicating that the 

proposed CCIS-MVQA captures the critical part of the image 

that has a causal correlation with the predicted answer, further 

reflecting that the proposed CCIS-MVQA model minimizes the 

use of irrelevant background information in decision-making. 
TABLE II 

EFFECT OF DIFFERENT K VALUE ON CCIS-MVQA PERFORMANCE (Acc. %) 

                k 

Dataset              
10% 20% 30% 40% 

VQA-RAD -3.2 -12.6 -19.2 -20.2 

SLAKE -3.1 -11.4 -17.4 -18.9 

VQA-Med-2019 -3.5 -9.2 -18.6 -19.4 

 

Fig. 5 shows more intuitive examples of counterfactual 

samples with different k values, where the image’s gray pixel 

masks are casual or non-casual correlated. In each two-line 

legend, the casual correlated counterfactual sample is at the top, 

and the non-casual correlated counterfactual sample is at the 

bottom. Each group’s casually correlated counterfactual 

samples accurately placed the masks in the correct region, 

which casually correlated with correctly predicting an 

abnormality. Furthermore, the non-casual correlated 

counterfactual samples of each group place the masks in the 

irrelevant background position. With the increase in parameter 

k, the mask range gradually expands, which proves the 

effectiveness of the proposed causal intervention strategy. 

As shown in the first row in Fig. 5(a), the gray pixel masks 

cover critical parts of the image that are important for correctly 

answering a question related to pneumocystis carinii 

pneumonia, the abnormal lung region. In contrast, in the second 

row, the gray pixel masks cover the background regions (e.g., 

the pixels at the edge of the image) that are unimportant for 

correctly answering a question related to pneumocystis carinii 

pneumonia, indicating that influential objects are more related 

to the QA pair. 

 
Fig. 5. Examples of counterfactual samples between causality and 
non-causality correlations. 

Finally, Fig. 6 shows the causal saliency map generated by 

different visualization methods through model backpropagation 
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calculations. The data in VQA-Med-2020 are selected for this 

experiment. This data are invisible to the CCIS-MVQA model 

because the CCIS-MVQA model is only trained on VQA-RAD, 

SLAKE, and VQA-MED-2019 datasets. 

From the perspective of human vision, the activation-based 

methods [52], e.g., Grad-CAM, Grad-CAM++, and Xgrad-

CAM, illustrated in the second, third, and fourth columns in Fig. 

6, use the linear combinations of class activation functions from 

convolutional layer to obtain causal saliency maps. These maps 

are excessively dispersed, blurry, noisy, and fail to visualize 

fine-grained features. However, these fine-grained features are 

significant in interpreting VQA-Med models [39]. 

 
Fig.6. Examples for interpretable causal saliency map. 

 

From the last column in Fig. 6, the LRP method does pay 

attention to the pixels with higher causal correlation. It 

generates a more precise causal saliency map for the original 

images with specific lesion or abnormality features, proving 

that the proposed CCIS-MVQA can obtain more accurate 

anomaly detection results. For example, the osteoid osteoma 

and venous thrombus are located more accurately in the sixth 

row, and the last row in Fig. 6. The abnormality or lesion is one 

of the major concerns during clinical practice, which becomes 

the key of VQA-Med. These examples in Fig. 6 show that the 

proposed CCIS-MVQA can capture the causal correlation 

between specific lesion or abnormality features in medical 

images and provide users with more appropriate explanations. 

In addition, the activation-based approach neither guarantees 

that the interpretation is accurate nor reflects the model’s 

decision-making process. LRP used in CCIS-MVQA calculates 

the contribution of each pixel of the input image by back-

propagating the layer-wise relevance weights. Therefore, it is 

faithful to the model and highlights the target object rather than 

the background. 

E. Quantitative evaluation of debiasing ability 

We manually redevise the evenly distributed dataset VQA-

RAD [48] to quantify the debiasing ability of the proposed 

CCIS-MVQA and construct a biased dataset VQA-RAD*. 

Specifically, for closed answers (“Yes/No”), the original 

distribution in VQA-RAD is 814 questions for an answer “No” 

and 899 questions for “Yes” in the training set. The test set had 

133 questions for “No” and 118 for “Yes.” The data distribution 

in VQA-RAD is relatively balanced. This paper divides the 

answers with similar original distribution into two groups 

roughly at a ratio of 1:3. Experimental results are shown in 

Table III. 

According to Table III, the performances of all the models on 

VQA-RAD* are not as good as that of the original dataset. The 

performance of the MEVF series [25] decreases most obviously, 

and the accuracy of the opened, closed, and overall question 

answering decreases by 29%, 33%, and 32%, respectively. 

Compared with the two debiasing methods in generic domain 

VQA, i.e., RUBi [12] and CF-VQA [10], the accuracy of CCIS-

MVQA’s opened questions has declined similarly. In contrast, 

the overall performance on VQA-RAD* exceeds that of other 

models, indicating that our proposed CCIS-MVQA has a 

particular debiasing ability. The superscript values of our CCIS-

MVQA are the MSE variance estimates for the accuracies. 

 
TABLE III 

THE QUANTITATIVE VERIFICATION RESULTS OF MODEL DEBIASING ABILITY (ACC. %) 

Model 
VQA-RAD  VQA-RAD* 

Opened Closed Overall  Opened Closed Overall 

MEVF-BAN[25] (2019) 43.90 75.10 62.60  31.14 50.62 42.83 

MEVF-SAN[25] (2019) 40.70 74.10 60.80  32.21 50.47 43.17 

RUBi [12] (2019) 63.46 78.22 69.83  51.53 64.27 59.17 

CF-VQA [10] (2021) 60.26 74.08 68.55  51.95 65.45 60.05 

CCIS-MVQA(ours) 68.78±0.23 79.24±0.16 75.06  57.92±0.31 61.68±0.27 60.18 

*Represents a reconstructed dataset with opposite distributions of the training and test sets  
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Moreover, the performance degradation of the closed 

questions is higher than that of the open questions because the 

binary (Yes/No) answers of the closed questions accounts for a 

large proportion of VQA-RAD, and changing its distribution 

impacts the model performance. However, the answers to the 

opened questions are a relatively small proportion and a wide 

variety; changing the data distribution has relatively little effect 

on model performance. 

RUBi [12] and CF-VQA [10] prevent the learning of 

question branches by influencing the model predictions, 

thereby dynamically adjusting loss functions to compensate for 

biases. We believe that the two methods eliminate the influence 

of the language modal to make up for language bias caused by 

the unbalanced dataset distribution and do not utilize the 

information of the image modal. 

In addition, visualization technology [50] is used to 

demonstrate the model’s testing process, as shown in Fig. 7. 

First, the answer distribution of two specific question modes is 

compared. Then, the extracted feature map is used to display 

the most critical area of the image in the test samples. MEVF 

[25] is used as the baseline model. 

In the first row of Fig. 7, CCIS-MVQA shows its ability to 

suppress the unbalanced distribution for the question “Is there 

an abnormality in the X-ray?” which is a closed question with 

candidate answers of “Yes” or “No.” The answer to most closed 

questions in the training set is “No.” For test input, there is an 

abnormal bone density (red rectangle) in the shoulder joint, and 

the baseline model almost always answered “No” due to the 

unbalanced distribution. In contrast, CCIS-MVQA outputs an 

80% probability of “Yes” and appears to infer the shoulder bone 

density abnormality by accurately locating the lesion region. In 

contrast, the baseline MEVF does not capture the abnormal 

region in the image and gets a wrong answer. 

A similar result occurs in the second row in Fig. 7 with the 

question, “What is an abnormality in the CT scan?” Over 50% 

of answers in the dataset are “Cystic teratoma,” and only 10% 

are “Colon cancer.” For the test input, there is a tumor 

abnormality in the region of the colon (the red arrow points), 

and CCIS-MVQA accurately identifies the lesion. However, the 

baseline model MEVF captures the wrong location of the lesion. 

Regarding answer prediction, the baseline model only 

concludes with “Cystic teratoma” from the answer distribution 

in the training set. CCIS-MVQA applies a causal intervention 

strategy and deduces the correct “Colon cancer” answer based 

on the correct lesion region. However, the training samples of 

“colon cancer” are tiny. 

The last row in Fig. 7 gives an example of the incorrect 

prediction of CCIS-MVQA, which could refer to the abnormal 

“small bowel volvulus” in the image. The dataset’s uneven 

distribution affects the baseline model and answers “Hernia,” 

which appears most frequently in the training set. Although 

CCIS-MVQA is not affected by the uneven distribution of 

datasets, it cannot distinguish the characteristics of “Small 

bowel lymphoma” and “Small bowel volvulus,” which shows 

that the recognition ability of CCIS-MVQA to find features in 

images could still need to be further improved. 

 
Fig.7. Visualization results of debiasing ability with CCIS-MVQA. 

 

F. Ablation study and error analysis 

We removed the CLIP module separately as our baseline 

model to evaluate the validity of the pre-training process. As 

shown in Table IV, the performance of the baseline model that 

removes the CLIP separately has decreased to varying degrees. 

Experimental results on VQA-Med-2019, SLAKE, and VQA-

RAD datasets demonstrate the necessity and effectiveness of 

the pre-training process. The superscript value of our CCIS-

MVQA model is the MSE of the generalization error. 

 
TABLE IV 

EFFECT OF PRE-TRAINING PROCESS ON CCIS-MVQA 

CLIP 
VQA-RAD (Acc. %) SLAKE (Acc. %) 

Opened Closed Overall Opened Closed Overall 

 68.78±0.23 79.24±0.16 75.06 80.12±0.11 86.72±0.07 84.08 

 49.86±0.19 76.79±0.21 66.08 76.61±0.18 80.16±0.12 78.84 

CLIP 
VQA-Med-2019 

Modality Plane Organ Abnormality All 

 88.78±0.38 88.16±0.21 84.18±0.14 12.35±0.40 68.37 

 81.39±0.64 79.13±0.29 77.86±0.22 4.16±0.54 60.60 

 

We evaluated the effect of the batch size and the parameter k 

in the VQA-Med-2019 dataset. We set the batch size to 16, 32, 

64, and 128, and set parameter k to 10, 20, 30, and 40%, 

respectively. Experimental results are illustrated in Fig. 8. We 

observe that the model has the best prediction performance 

when the batch size is 64. In addition, the prediction accuracy 

of the CCIS-MVQA model decreases gradually with the 

increase of parameter k. 
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Fig. 8. Ablation studies on batch size and parameter k 

 

Finally, we apply confusion metrics to evaluate the effect of 

the classifier model in the VQA-Med-2019 dataset and perform 

error analysis. We draw the confusion matrix for the Plane 

classifier with 16 candidate answers in Fig. 9.  

 

 
Fig.9. The confusion matrix of Plane 

As shown in Fig. 9, most candidate answers are easily 

classified in the “plane” category, but some misclassifications 

exist. For example, the model tends to predict “axial” as 

“frontal” in that the two concepts are easily confused. Moreover, 

“transverse” and “mammo-mlo” cannot be accurately predicted, 

which indicates that the CCIS-MVQA model is not more robust 

in understanding images in lateral, internal, and external 

oblique positions. 

V. CONCLUSIONS 

This paper proposed a novel CCIS-MVQA framework to 

discuss how to mitigate the influence of language bias and 

enhance the interpretability of the VQA-Med model in mixed 

causal data. The proposed CCIS-MVQA framework consists of 

image feature extraction, question feature extraction, BAN, and 

interpretation generator. This paper focused on the 

interpretation generator to explore the interpretability and 

language bias of VQA-Med. We incorporated counterfactual 

interpretation and causal-effect reasoning into CCIS-MVQA to 

explore how the VQA-Med system responds to causal 

intervention strategy (such as the covered image of a given 

focus, how the model generates predictive answers), and 

quantify the effects of such intervention strategies. 

The LRP technique was used in model training to generate 

counterfactual samples to obtain the causal connection between 

input samples and answers. Unlike other methods that use 

artificially specified rules, the counterfactual samples produced 

using LRP and the CCIS causal intervention strategy can 

generate interpretability and prediction results simultaneously. 

The causal intervention strategy follows a randomized 

controlled trial, and different conditions may produce different 

results. 

Although our CCIS-MVQA model achieved good results in 

specific datasets, further improvement is needed to recognize 

fine abnormal features in the image. Future research could 

integrate existing medical knowledge bases and 

structured/unstructured knowledge to enhance performance. 

This could be achieved by incorporating knowledge graphs, 

large language models (LLMS) [53], and other knowledge 

bases into the training and inference process of VQA-Med 

models. 
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