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Key points: 8 

 We employed a Convolutional Neural Network to automatically pick the onsets of 9 

inner-core sensitive PKIKP waves. 10 

 Our automatic picker approaches near human-level precision and initially reproduces 11 
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studying the Earth's deep interior, including the inner core. 14 
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Abstract 19 

Body waves traversing the Earth’s interior from a seismic source to receivers on the surface 20 

carry rich information about its internal structures. Their travel time measurements have been 21 

widely used in seismology to constrain Earth’s interior at the global scale by mapping the 22 

time anomaly along their ray paths. However, picking the travel time of global seismic 23 

waves, suitable for studying Earth’s fine-scale structures, requires highly skilled personnel 24 

and is often fairly subjective. Here, we report the development of an automatic picker for 25 

PKIKP waves, traversing the Earth nearly along its diameters and through the inner core, 26 

based on the latest advances in supervised deep learning. A convolutional neural network 27 

(CNN) we developed automatically determines the PKIKP onset on vertical seismograms 28 

near its theoretical prediction of cataloged earthquakes. As high-quality manual onset picks 29 

of global seismic phases are limited, we employed a scheme to generate a synthetic 30 

supervised training dataset containing 300,000 waveforms. The PKIKP onsets picked by our 31 

trained CNN automatic picker exhibit a mean absolute error of ~0.5 s compared to 1,503 32 

manual picks, comparable to the estimated human-picking error. In an integration test, the 33 

CNN automatic picks obtained from an extended waveform dataset yield a cylindrically 34 

anisotropic inner core model that agrees well with the models inferred from manual picks, 35 

which illustrates the success of this pilot model. This is a significant step closer to harvesting 36 

an unprecedented volume of travel time measurements for studying the inner core or other 37 

regions of the Earth’s deep interior. 38 

 39 

Plain language summary 40 

Seismic body waves traversing the Earth’s interior provide critical constraints on structures 41 

and dynamics of the Earth’s deep interior, including the solid inner core. The onset time of 42 

compressional waves from a seismic source passing through the inner core, known as PKIKP 43 

waves, has been widely used to study the Earth’s deepest shell. However, the collection of 44 

manual onset time picks meticulously analyzed by experienced analysts is scarce because it is 45 

laborious. At the same time, large collections compiled by multiple data centers, such as the 46 

International Seismological Center’s PKIKP onset dataset, are inhomogeneous and deemed 47 

less reliable for inner-core research than the data collected by individual researchers. Here, 48 

we develop an automatic PKIKP onset picker based on recent advancements in machine 49 

learning in computer vision, the Convolutional Neural network (CNN). We trained the 50 
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network with synthetic waveforms, mimicking the influence of the Earth’s structure on the 51 

initial waveform shape. Our comprehensive tests benchmark the consistency between the 52 

automatically picked and the researcher-examined datasets. The automatic picker enables the 53 

further exploration of the vast seismic archive for unprecedentedly large datasets devoted to 54 

the study of the Earth’s deep interior with greater details. 55 

  56 
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1 Introduction 57 

Seismic energy radiated by earthquakes travels through the Earth’s interior, carrying 58 

information to seismic receivers on the Earth’s surfaces. Seismological tools for studying the 59 

Earth’s deep interior can be broadly categorized into three main groups, depending on their 60 

frequency characteristics: body waves, global coda-correlation wavefield, and normal modes. 61 

Teleseismic body waves are high-frequency seismic signals (periods from around 0.1 to ~10 62 

seconds) whose sensitivity to the structures can be mapped along their ray paths, thanks to the 63 

infinite frequency approximation (Bullen, 1961; Kennett, 2009; Kennett et al., 1995; Shearer, 64 

2019). There are numerous applications of the methods based on body waves, from 65 

discovering the main boundaries within the Earth (Gutenberg, 1914; Inge Lehmann, 1936; 66 

Mohorovičić, 1910) to constructing 1D or 3D Earth models (Aki & Lee, 1976; Kennett et al., 67 

1995; Obayashi et al., 2013). The normal mode data, or spectra, of long-period standing 68 

waves excited by large earthquakes at hundreds of seconds, are important to constrain larger-69 

scale structures (Dahlen & Tromp, 1998). Normal modes have also been used to construct 1D 70 

models of the Earth (Dziewonski & Anderson, 1981) and illuminate the IC (e.g., Deuss et al., 71 

2010; Romanowicz & Bréger, 2000; Woodhouse et al., 1986). Correlation wavefield is an 72 

emerging concept that uses features formed by the similarity between weak seismic signals at 73 

mid-range periods (~ tens of seconds) (Tkalčić et al., 2020). It has been used to constrain a 74 

new 1D Earth model (Ma & Tkalčić, 2021) and study the Earth’s IC (e.g., Costa de Lima et 75 

al., 2022; Tkalčić & Phạm, 2018; Wang & Tkalčić, 2021). 76 

As the Earth’s deepest and most mysterious layer, the Earth's IC plays an essential role in the 77 

Earth’s dynamics and geomagnetic field (Tkalčić, 2017). In studying the IC and the Earth’s 78 

deep interior, utilizing body waves, with their high-frequency nature, is unparalleled among 79 

seismological tools. Body wave travel times are the most commonly measured property 80 

because the data can be simulated efficiently using the ray theory, yet full waveform 81 

simulation is computationally expensive. The IC is challenging to study because of the 82 

limited sampling coverage and data quality of IC-sensitive waves, such as PKIKP traversing 83 

the IC and PKiKP reflecting off the inner core boundary (ICB) (Figure 1). The expansion of 84 

global seismic networks brings a valuable opportunity to place additional constraints and 85 

details on the Earth's deep interior, including the IC, via array-based observations of exotic 86 

seismic phases (e.g., Burdick et al., 2019; Phạm & Tkalčić, 2023; Waszek & Deuss, 2015). 87 

However, collecting the arrival onsets of body waves for global studies is laborious. The 88 

largest collection of manually picked onsets is available at the International Seismological 89 
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Centre (ISC; Bondár & Storchak, 2011), where seismological agencies worldwide report their 90 

waveform data and time picks of the main seismic phases. Although several researchers have 91 

used the mass dataset to study IC deep structures in the early years (e.g., Ishii & Dziewoński, 92 

2002; Shearer, 1994), the ISC dataset (www.isc.ac.uk/iscbulletin/search/arrivals/) has often 93 

been criticized for significant data scatter because the onset picks are performed by multiple 94 

analysts with few measures to ensure picking qualities across the data centers (Stephenson et 95 

al., 2021; Su & Dziewonski, 1995). Deep-Earth seismologists often need to manually pick a 96 

small portion of available waveforms using their methods to ensure the homogeneity of the 97 

input data. However, due to the large volume of seismic data, it is challenging to hand-pick 98 

all waveform datasets consistently. Thus, developing automatic tools is crucial in advancing 99 

studies of Earth’s deep interior at the global scale. This will not only ensure consistency in 100 

the onset picks but also harness the full capacity of the global seismic network.  101 

Automatic determination of seismic arrivals for local, small earthquakes has been developed 102 

with the short-temporal average over long-temporal average (STA/LTA)-type algorithms for 103 

several decades (e.g., Allen, 1982; Baer & Kradolfer, 1987; Hildyard et al., 2008; Sleeman & 104 

van Eck, 1999). The last few years have witnessed the emergence of machine learning 105 

algorithms to support automatic data processing as a more reliable technique, with many 106 

recent breakthroughs. Recent advances in deep learning algorithms include Convolutional 107 

Neural Networks (CNNs) in computer vision (LeCun et al., 2015) and Transformers in 108 

natural language processing (Vaswani et al., 2017). They have been widely deployed to detect 109 

local microearthquakes and discriminate seismic signals (S. M. Mousavi et al., 2020; Saad et 110 

al., 2022; Zhu et al., 2019), determine first-motion polarity (Ross, Meier, & Hauksson, 2018), 111 

and pick the onsets of local P and S waves (e.g., S. M. Mousavi et al., 2020; Ross, Meier, 112 

Hauksson, et al., 2018; Zhu & Beroza, 2019). It is broadly agreed that deep learning can 113 

achieve higher accuracy and precision than engineered automatic picking based on the 114 

STA/LTA approach (S. M. Mousavi et al., 2020; Ross, Meier, & Hauksson, 2018; Zhu & 115 

Beroza, 2019).  116 

The strategies and purposes of automatic picking are different on local and global scales. 117 

Ultimately, local microearthquake pickers scan through continuous seismic waveforms to 118 

detect earthquakes by determining their phase arrivals, such as P or S waves. On a global 119 

scale, earthquakes of global significance are routinely documented and reported in earthquake 120 

catalogs such as the Global Centroid Moment Tensor (GCMT; Dziewonski et al., 1981; 121 

Ekström et al., 2005), the U.S. Geological Survey National Earthquake Information Center 122 
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(USGS NEIC; Guy et al., 2015), or the ISC (Bondár & Storchak, 2011). We can predict the 123 

arrivals of their seismic phases utilizing existing 1D Earth models, such as PREM 124 

(Dziewonski & Anderson, 1981), CCREM (Ma & Tkalčić, 2021), IASP91 (Kennett & 125 

Engdahl, 1991), or ak135 (Kennett et al., 1995). Therefore, the main task of an automatic 126 

global picker is to pick the actual onsets of seismic phases precisely above the background 127 

noise level in pre-windowed waveforms based on theoretical predictions.  128 

Despite the successful application of automatic local seismic phase pickers in communities 129 

targeting shallow Earth structures, it slowly makes its way into global earthquakes and the 130 

study of deep Earth interior, perhaps due to the community’s relatively small size. However, 131 

the benefit of having an automatic tool for data collection is significant. In recent years, deep 132 

neural networks have been used to detect PmKP waves reflecting multiple times at the core-133 

mantle boundary (Dong et al., 2024), and SS signals used to study upper mantle structures 134 

(Garcia et al., 2021). This paper presents a pivotal effort to develop a tool for picking IC-135 

sensitive PKIKP onsets from global seismic networks. It demonstrates the need for high-136 

quality training datasets and provides new datasets of absolute PKIKP wave travel times for 137 

studying the Earth’s IC.  138 

 139 

Figure 1 Illustration of the ray paths of IC-sensitive waves. In (a), the orange line denotes 140 

the PKIKP ray path traversing the inner core (IC), and the green line denotes the PKiKP ray 141 

path reflected off the inner core boundary (ICB). The star and triangles denote the location of 142 

the earthquake and the receiving stations, respectively. The ray paths of P and S waves are 143 
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also denoted with blue and light orange lines. (b) bottoming radius of PKIKP waves relative 144 

to the epicentral distances. The bottom radius = 0 indicates the center of the Earth. The solid 145 

and dashed lines denote the radii of the ICB and the innermost inner core (IMIC) transition 146 

(Phạm & Tkalčić, 2023; Stephenson et al., 2021), respectively. The shaded areas (165° - 147 

180°) in a) and b) denote the epicentral range of the PKIKP dataset in this study. 148 

 149 

2 Methods 150 

2.1 PKIKP arrival dataset with manual picks  151 

We employ 8208 PKIKP arrival records of 419 globally distributed earthquakes (Figure 3) 152 

between March 1990 – June 2019. Most events have a magnitude range of 7.5 ≥ Mw ≥ 5.7 to 153 

avoid introducing uncertainties from too large or too small earthquakes in picking PKIKP 154 

onsets. All PKIKP records are collected from a near-antipodal distance (>165°) to place 155 

additional constraints on the Earth’s innermost inner core (IMIC) (Figure 1) and sampled at 156 

40 Hz. In automatic picking by the deep-learning network, the input waveforms are filtered 157 

between 0.5–2.0 Hz, a common frequency band visualizing most PKIKP arrivals in our 158 

dataset. Tkalčić et al. (2023) presented 1503 manual onset picks of PKIKP arrivals from this 159 

dataset. They did not analyze all events along the quasi-equatorial paths due to source-160 

receiver ray path geometry saturation. The hand-picked waveform dataset size is much 161 

smaller than the typical size to train a deep learning network in seismological applications 162 

(Figure 2). Consequently, the picked waveforms (or labeled waveforms in deep-learning 163 

terms) are used to test the performance of our trained CNN only. The rest of the unpicked 164 

waveforms are also used for an integrated test of the network performance in Section 3.2. 165 

The manual determination of PKIKP onsets involves the collection of seismic waveforms 166 

around the predicted arrivals based on the Earth models (Tkalčić et al., 2023). Firstly, 60-167 

second-long waveforms around the arrivals are visually inspected to determine if the 168 

anticipated seismic phase is visible and the time of its onset. Several filter bands assist in 169 

visually determining arrival onsets when unfiltered waveforms are unclear. To ensure the 170 

signal is from a teleseismic event, waveforms from multiple stations recording the expected 171 

PKIKP phase are visualized in a gathered plot. The human picker may also analyze a large 172 

number of recordings from a single event, sort them as functions of epicentral distance or 173 

back azimuth, and compare PKIKP with waveforms of other PKP branches, PKPbc and 174 

PKPab to recognize the PKIKP arrivals. The waveforms of P waves recorded at epicentral 175 
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distances between 30° and 90° but falling within the same azimuthal corridor to the PKIKP 176 

waves around 10° are also of interest because they inform the human picker of the 177 

earthquake’s source time function, i.e., the emergence of the arrival. In general, the error of 178 

manual picking of PKIKP absolute travel times, often due to the emergent onsets of the 179 

PKIKP waves, the attenuation by the IC structure, or due to waveform change introduced 180 

through bandpass filtering, is around 0.5 s (Tkalčić et al., 2023). 181 

On the contrary, in the automatic picking of the CNN network, we applied a single filter of 182 

0.5–2.0 Hz. 50-s waveform segments around ak135 predicted PKIKP onsets are used as the 183 

network input. The automatic picker does not accept any supplementary information used in 184 

manual picking. 185 

2.2 Design of synthetic training datasets 186 

Our automatic picker is based on a supervised learning model (Rumelhart et al., 1986), which 187 

longs for a large, labeled dataset to determine an object's features. Figure 2a compares the 188 

training dataset sizes of several local phase pickers. Due to the lack of high-quality labeled 189 

seismic data corresponding to the Earth’s IC, we adopted a synthetically generated training 190 

dataset. This approach has been widely used in deep-learning seismology, mostly in 191 

denoising and interpreting seismic imaging (S. M. Mousavi & Beroza, 2022). 192 

Following the procedures earlier introduced by Phạm and Tkalčić (2017), we generated 193 

synthetic waveforms to simulate the key properties of antipodal PKIKP arrivals. Firstly, 194 

Telewavesim (Audet et al., 2019), a Python package implementing the matrix propagation 195 

method (Kennett, 2009), generates the local crustal responses of teleseismic plane wave 196 

arrival. The structural responses are then convolved with randomized source time functions, 197 

which are lowpass filtered at a random corner frequency between 0.2 and 1.5 Hz. The choice 198 

of the corner frequency simulates the Earth’s natural filtering effects due to its attenuation, 199 

including the IC effects, of the global phase. The local crustal conditions are randomly 200 

selected from the global CRUST1.0 model (Laske et al., 2013) to enhance the generated 201 

waveform’s variability. For each waveform generated, its label indicating the first phase onset 202 

is calculated analytically. Thus, the sets of labeled waveforms can be synthesized at large 203 

volumes.  204 

Furthermore, real noise is added to the synthesized waveforms to simulate the ambient noise 205 

conditions of PKIKP waves. We take noise segments 5 s before P arrivals from real P 206 

seismograms collected from globally distributed seismic stations in epicentral distances of 207 
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60° – 90° and within 10° deviation of azimuth with respect to the stations used to collect the 208 

PKIKP dataset. Both synthetic waveforms and noise records are normalized to their 209 

maximum amplitudes. The noise amplitude is scaled by multiplying a randomized ratio in the 210 

normal distribution of 0.2 standard deviation. Noise waveforms are also used in model 211 

training as an individual set to make the CNN model able to distinguish seismic signals from 212 

ambient noise. Such generated datasets form our so-called “regular P-wave” dataset and 213 

“noise” dataset (Figure 2b). 214 

Synthetic waveforms generated by the scheme above consider the response of crustal 215 

variability and introduce the attenuation from the IC implicitly through the choice between 216 

0.2 to 1.5 Hz corner frequencies for the synthetic source time functions, but they are still 217 

inadequate. The “regular P-wave” training set often has sharp onsets, so an automatic picker 218 

trained on it tends to pick the most significant onset of the arrivals. However, actual PKIKP 219 

arrivals might have an emergent onset due to the gradual release of earthquake energy. 220 

Experienced analysts can realize the pattern by learning the accompanying P-arrival 221 

waveform shapes (Tkalčić et al., 2023). For the automatic picker, we explicitly generated an 222 

additional dataset of emergent arrival for training, called the “targeted P-wave” dataset. A 223 

random amplitude ratio between 0.2 – 0.5 is multiplied by the first 4-s of the originally 224 

synthesized P arrival to create the emergent onset. The targeted P set is the key to improving 225 

the precision of the CNN in picking PKIKP onsets because enhanced learning on the targeted 226 

P dataset enables our picker to identify emergent arrivals from noise and return PKIKP onset 227 

picks with lower error (see demonstration in Section 3.1).  228 

In summary, our training dataset consists of three subsets: a regular set of synthetic P 229 

waveforms, a real noise set, and a targeted P-wave set (Figure 2b), each containing 100K 20-230 

s waveform samples to make the total data amount comparable to the training datasets used in 231 

other studies (Figure 2a). We demonstrate the influence of each dataset on onset picking later 232 

in Section 3.1. In the training dataset, we randomly cut a 20-s segment around the onset label 233 

from each synthetic waveform so that the onset can be at any location within the window. 234 

Thus, labels for positive signals are linear P phase onsets between 0 and 20, and the pure 235 

noise record labels are always 0. 236 
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 237 

Figure 2 Datasets used in this study. (a) compares the number of seismic records used in this 238 

study with four previous representative studies (SS phases in Garcia et al. (2021), P in Ross, 239 

Meier, and Hauksson (2018), P and S in S. M. Mousavi et al. (2020) and Zhu and Beroza 240 

(2019)). The record numbers also count noise samples and are taken the common logarithm 241 

in y, e.g., the training set of S. M. Mousavi et al. (2020) is approximately 100 times bigger 242 

than our PKIKP dataset. This study uses a specialized synthetic waveform dataset for model 243 

training and a real PKP waveform dataset with manually picked PKIKP onsets for testing. 244 

(b) shows several waveform examples in each training subset: regular P, targeted P, and 245 

noise. Each subset consists of 100K 20-s long waveforms. The dots denote the location of true 246 

P onsets in the presented samples. Targeted P waveforms have relatively small amplitude 247 

onsets compared to the regular ones to simulate and approach the features of real emergent 248 

PKIKP arrivals. The main text explains how these synthetic waveforms are generated. 249 
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 250 

Figure 3 Location of earthquake events and antipodal stations used for collecting the 251 

PKIKP waveform dataset in this study. Green triangles denote receiver stations. They all 252 

have epicentral distances greater than 165° from the source events. Stars denote events, 253 

whereas ones with manual picks are labeled in red. The selected events are between March 254 

1990 and June 2019 and have 7.5 ≥ Mw ≥ 5.7. 255 

2.3 Model architecture and training  256 

We employed a convolutional neural network (CNN) model in this study, inspired by the 257 

work of Ross, Meier, Hauksson, et al. (2018) and Garcia et al. (2021). The network’s 258 

architecture (Figure 4) consists of four 1D convolutional layers, constructing the feature-259 

extraction module. The convolution operation is performed between the input and a trainable 260 

filter in a convolutional layer. During the training process, the filters keep updated by 261 

matching the network’s output and given data labels (phase onsets in this study) to allow the 262 

CNN to extract and return more sophisticated and more correct features of input data. Each 263 

convolutional layer is followed by a max-pooling layer that downsizes the input waveforms 264 

by retaining the maximum value in every two consecutive values of the inputs to extract the 265 

highlighted features and a batch-normalization layer that normalizes the previous layer’s 266 

output within mini-batches. The convolutional output is then flattened and fed into fully 267 

connected layers with a one-to-one point connection to their previous layers. The network 268 

output is a directly weighted linear of the final layer, referring to CNN-picked phase onsets. 269 

Except for the final layer, all the other layers are activated by a rectified linear unit (ReLU) 270 
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function, a popular activation function in deep learning that returns the input if positive and 271 

zero if negative. The sizes of the convolution kernels and dense layers are customized 272 

considering the signal frequency content of the PKIKP waveforms recorded at the global 273 

scale.  274 

The Huber loss function (Huber, 1964) was employed, and the network was trained using the 275 

Adam optimization algorithm (Kingma & Ba, 2014). We experimented with different 276 

learning rates representing the model weights’ updating speed during training, from 0.01 to 277 

0.0001, and empirically found that the default one, 0.001, produced the most desirable 278 

results. The training process on 300K samples took about 10 minutes on a graphical 279 

processing unit at the Australian National Computational Infrastructures’ (NCI) Gadi cluster. 280 

An early stopping method was applied to monitor the loss on the validation dataset during 281 

model training, allowing the model to restore the optimal weights as the validation loss no 282 

longer decreases within five epochs, in which case we considered the network well-trained. 283 

Our network's training process lasted nine epochs. The model weights obtained at the fourth 284 

epoch were restored as the optimal (Figure S1). Further training would not lead to significant 285 

improvements in picking precision by our test. 286 
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 287 

Figure 4 Architecture of the Convolutional Neural Network (CNN) used in this study. The 288 

network consists of four convolutional layers, pooling layers, and three fully connected 289 

layers. The rectified linear unit (ReLU) is used as the activation function in all layers except 290 

the last output layer using linear activation. The network input is a 1D time series (i.e., a 291 

seismic waveform) whose label is a time pick of the phase onset (represented by the red dot; 292 

see the bottom waveform). The boxes representing layers in the network are labeled by the 293 

layer types and their corresponding parameters. Conv1D represents a convolutional layer in 294 

1D, followed by the numbers of filters and kernel size. Max-Pooling is a pooling layer with a 295 

stride of 2 that halves the size of the input array by retaining the maximum value in every two 296 

consecutive values of the inputs. All inputs are connected to outputs in a fully connected layer 297 

(Dense layer in this network). Where specified, layers’ outputs are normalized within their 298 

mini-batches, known as batch normalization (BN). 299 
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2.4 Picking PKIKP onsets 300 

We followed the approach proposed by Garcia et al. (2021) to repeat picking on a 20-s 301 

window sliding along a long input seismogram at every sample. At each 20-s window, the 302 

CNN network instantly picks a wave onset or detects the waveform segment as noise 303 

(Animation S1). We rely on the consistency of a pick over multiple windows as a 304 

measurement of quality for the pick, which avoids the potential randomness of the CNN 305 

picker. In an ideal condition, once an onset appears in the sliding window, it will be picked 306 

immediately and kept picked until the sliding window passes it. Since the picking may 307 

wander slightly around the onset, a clustering method, DBSCAN, is introduced to group the 308 

picks with small variations (Ester et al., 1996; Garcia et al., 2021). If there are more than five 309 

adjacent picked points in which the interval between any two neighbors is less than or equal 310 

to the sampling interval 0.1 s, they are regarded as a single cluster, and, in the meantime, the 311 

picks in this cluster are averaged to return a unique onset pick. Thus, the quality of a cluster-312 

returned pick is defined as the number of actual picks (picks in its cluster) over the ideal 313 

maximum number of picks:  314 

𝑄𝑝𝑖𝑐𝑘 =
𝑁𝑎𝑐𝑡𝑢𝑎𝑙

𝑁𝑚𝑎𝑥
=
𝑁𝑎𝑐𝑡𝑢𝑎𝑙∆𝑡

𝑇
 (1) 

In this study, the window’s sliding step ∆𝑡 is set to 0.1 s and length 𝑇 is 20 s. Thus, 𝑁𝑚𝑎𝑥, the 315 

theoretical maximum counts of a cluster-returned pick, is 200. For example, if a time point is 316 

repeatedly picked 100 times by the CNN picker during sliding-window picking, its returned 317 

quality is 0.5. 318 

In practice, we chose 50-s waveform segments around ak135 predictions as input. This 319 

waveform length allows an onset pick’s quality to reach the maximum by a 20-s sliding 320 

window if the deviation between actual PKIKP onsets and ak135 predictions is less than 5 s, 321 

ideal for covering most realistic situations. Among the cluster-returned picks, only the pick 322 

with the highest quality is chosen as the final CNN picked PKIKP onset. Sliding-window 323 

picking provides a simple way to classify the quality of automatic onset picks. We 324 

empirically regard 0.2 as the quality threshold of credible picks in this study, but in practice 325 

the value depends on the desired picking precision. High-quality picks obtained by our CNN 326 

picker always have high precision.  327 
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3 Test case results 328 

3.1 Test on labeled waveforms 329 

 330 

Figure 5 Representative CNN-picked PKIKP onsets. Quality plots list the quality of all 331 

potential picks within the window by the CNN automatic picker (how the quality is defined is 332 

explained in Section 2.4). For each waveform, the pick with the highest quality is chosen as 333 

the CNN-picked PKIKP onset (labeled on the waveforms above in green), and the others are 334 

abandoned. Human-picked PKIKP onsets (as per Tkalčić et al. (2023)) are labeled in red. 335 

Note that the labeled manual picks were made by using multiple frequency filters and 336 

multiple stations and looking at P onsets (see detailed explanations in Section 2.1), while the 337 

CNN picker looks at the presented waveforms under the single frequency band of 0.5–2.0 Hz 338 

when picking. (a) and (b) are two waveforms with emergent PKIKP onsets. (c) and (d) are 339 
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two waveforms with clear PKIKP arrivals, and (e) and (f) have higher noise. Our automatic 340 

picker returns high-quality (i.e., over 0.2 by sliding-window picking) onset picks in all cases.  341 

Figure 5 demonstrates the result of the automatic picking procedure for six waveform 342 

examples of various data qualities in our PKIKP dataset. Animation S1 displays the sliding-343 

window picking process dynamically. Examples of waveforms with emergent onsets are 344 

shown in panels a) and b), sharper onset waveforms are shown in panels c) and d), while 345 

waveforms at low signal-to-noise ratio are shown in panels e) and f). The clustered pick 346 

counts and their proportions to the total picks are shown in the bottom panels (see Section 2.4 347 

for more details). The automatic picks of the onsets, corresponding to the most consistently 348 

picked time by the CNN picker while sliding the window, are close to the manual 349 

counterparts in the examples.  350 

We first applied automatic picking to the entire set of manually picked data. There are 1457 351 

automatic picks returned (Figure 6a), which include 1300 picks with empirically determined 352 

high qualities of over 0.2 from sliding-window picking (Figure 6b). The improvement of the 353 

automatic picks’ precision attests to the necessity of the sliding-window picking scheme. The 354 

picks’ precision, indicated by the mean average error (MAE), reduces markedly from 0.94 s 355 

to 0.55 s by removing the 157 low-quality picks. A small portion (46 waveforms) of samples 356 

is picked by human analysts but classified as noise by our picker. This is attributed to 357 

humans' more comprehensive picking process, as explained in Section 2.1 and the next. 358 

These CNN-classified noise waveforms do not show a recognizable onset in 0.5–2 Hz, the 359 

frequency band we adopt in automatic picking (Figure S2). 360 

 361 

Figure 6 Comparison between human-picked and CNN-picked PKIKP onsets. (a): all non-362 

zero CNN picks obtained on 1503 manually picked PKIKP waveforms; (b) and (c): the 363 

filtered high-quality picks with a picking quality greater than 0.2. (a) and (b) compare the 364 

CNN-picked onsets to available manual picks, both of which are with respect to ak135 365 
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predictions. The dot colors represent the quality of the CNN picks determined by sliding-366 

window picking. Darker colors mean more confidence that the pick is credible. This study's 367 

CNN picking error Δ refers to the bias of CNN picking to manual picking. The orange 368 

shadow areas indicate the CNN picks with Δ <= 1 s. Mean absolute error (MAE), the number 369 

of plotted CNN picks, and its percentage to the number of manual picks are labeled in the 370 

upper left corner of (a) and (b). The orange dashed lines in (a) and (b) indicate the ideal 371 

result that a CNN pick is identical to the human counterpart. The picking error distribution of 372 

high-quality CNN picks is plotted in (c) with the labels of mean and median errors. The small 373 

panel in (c) shows the number of CNN picks in each quality interval from 0.2 to 0.8. 374 

We demonstrate the necessity of using a targeted training dataset of emerging P onsets in 375 

Figure 7. As introduced in Section 2.1, human analysts can get the onset picks in Figure 7a 376 

because they can utilize the teleseismic P onset at shorter distances to learn about the source 377 

time function and single-event sorted recordings to identify and deduce the PKIKP onset. 378 

Furthermore, they can observe how different frequency content changes the look of the 379 

PKIKP waveform. Thus, the manual picks in Figure 7a should not be associated with 380 

immediately recognizable PKIKP signals and are not the results of instant decisions based on 381 

individual waveforms but of a cognitive process that involves processing and analyzing many 382 

waveforms, supplementary information, and disciplinary experience.  383 

An automatic picker makes decisions by analyzing the shape of PKIKP waveforms only. The 384 

network trained on the regular P-wave set works well on clear arrivals (Figure 7b) but 385 

consistently misses emergent arrivals (Figure 7a). As explained in Section 2.2, a targeted 386 

training P-wave dataset is our solution to enhance learning for targeted features, which refer 387 

to the emergent onsets of PKIKP resulting from extended earthquake energy release in this 388 

study. Our CNN picker trained with the new targeted dataset returned results consistent with 389 

manual picking, demonstrating that it owns the ability to identify emergent onsets and now 390 

works well on actual PKIKP waves.  391 

The global distribution and extended period of the earthquake events selected in this study 392 

result in significant differences in quality, quantity, and shape of PKP waveforms between the 393 

events. With this in mind, we take a closer look at individual events. The events with more 394 

than 20 records are selected to compare the precision of PKIKP onset picking between our 395 

CNN picker and humans (Figure 8). The MAE of obtained high-quality CNN picks on each 396 

event, except for a few poorly picked ones, is approximately 0.5 s, consistent with the overall 397 
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MAE and experiential human-picking error. Since the process of CNN picking only focuses 398 

on the waveforms themselves, we can use the CNN picker to pick PKIKP onsets from any 399 

newly obtained data, independent of the actual geographical conditions behind them. 400 

However, it is worth noting that there are several events where the CNN picks very few 401 

PKIKP onsets because the waveforms are too noisy. Humans will likely obtain more credible 402 

picks for these events because of the cognitive process described above. 403 

 404 

Figure 7. Demonstration of targeted training datasets. (a) and (b) show waveform samples 405 

from two events with differential picking results, respectively. The waveforms in (a) have 406 

representative emergent PKIKP onsets compared with (b). The plotted 15-s waveform 407 

segments are centered on human-picked PKIKP onsets. The yellow circles denote the 408 

automatic picks by our chosen CNN model trained on all three training datasets, regular P, 409 

noise and targeted P, and the green circles denote the ones from a CNN model trained only on 410 

regular P and noise datasets. 411 

 412 
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 413 

Figure 8 Precision of CNN picking compared to hand picking for individual events. The 414 

dots and error bars denote the non-negative mean absolute error (MAE) and the root mean 415 

square error (RMSE) of CNN picks relative to their human counterparts. The size of the dots 416 

indicates the number of high-quality CNN picks obtained that are used to calculate MAE and 417 

RMSE. Only the events with over 20 samples are taken into the comparison to avoid 418 

randomness. The dashed line denotes the mean MAE over all plotted events. 419 

3.2 Integration test of fitting IC’s anisotropic model 420 

Given that only a small portion of our PKIKP dataset is labeled manually, we are relatively 421 

limited in testing the automatic picker’s performance on the labeled data. To further 422 

showcase, we applied it to the whole dataset, including the remaining unlabeled waveforms. 423 

We conducted an integration test by comparing our inferences on the IC anisotropy by 424 

manually and CNN automatically picked PKIKP travel times (Figure 9). The picking results 425 

visualized on all waveforms are shown in File S1. Typically, the absolute PKIKP travel time 426 

residuals with respect to a spherically symmetric Earth model (ak135) are utilized to 427 

characterize cylindrical anisotropy in the IC. We compare the generated IC’s anisotropic 428 

models from automatic picks and available manual picks, respectively. In a cylindrically 429 

anisotropic model of the Earth’s IC, PKIKP travel time residuals in the IC are a function of 430 

the sampling angle 𝜉 (Creager, 1992): 431 
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∆𝑣

𝑣
= 𝛾 + 𝜀𝑐𝑜𝑠2𝜉 + 𝜎𝑠𝑖𝑛2𝜉𝑐𝑜𝑠2𝜉 (6) 

where the fractional velocity ∆𝑣/𝑣 can be expressed as: 432 

∆𝑣

𝑣
= −

∆𝑇

𝜏𝑎𝑘135
𝐼𝐶  (7) 

where ∆𝑇 is the residual of a CNN or human picked PKIKP travel time relative to the ak135 433 

prediction. The absolute travel time measurements are corrected for Earth’s ellipticity 434 

(Kennett & Gudmundsson, 1996) and mantle heterogeneity model DETOX-P3 (Hosseini et 435 

al., 2020). 𝜏𝑎𝑘135
𝐼𝐶  is the ak135 predicted PKIKP travel time in the IC under 5153.9 km. ∆𝑣/𝑣 436 

indicates the PKIKP’s travelling speed residual in the IC. 𝜉 is the angle between the PKIKP 437 

wave’s ray path in its bottoming point and the Earth’s rotation axis.  438 

We used the hierarchical Bayesian method to compare CNN and human obtained PKIKP 439 

residuals and the Markov chain Monte Carlo (McMC) to sample the anisotropy parameters, ε, 440 

σ, and γ as done by Tkalčić et al. (2023). Here we used the CNN picks with a picking quality 441 

of over 0.4, higher than the value of 0.2 used in onset-picking comparison (Figure 6), 442 

because the data quality of unlabeled waveforms is disparate, and we need a higher threshold 443 

to filter out uncertain automatic picks. The estimated values of model parameters are: 444 

CNN: 𝜀 = 3.2 ± 0.1, 𝜎 = −4.5 ± 0.3, 𝛾 = −0.2 ± 0.0, 𝛿 = 2.1 ± 0.0 (8) 

Human: 𝜀 = 3.0 ± 0.1, 𝜎 = −4.4 ± 0.3, 𝛾 = 0.0 ± 0.0, 𝛿 = 1.7 ± 0.0 (9) 

𝛿 is a hyperparameter in the Bayesian inversion inferring the amplitude of data noise 445 

expressed in seconds. It returned close values in both datasets, however, a few CNN picks 446 

significantly away from the main body led to the bias (Figure 9a). In order to show the most 447 

general results with minimal manual interference, we did not choose to isolate them. The 448 

stricter threshold of automatic picking, 0.4, results in a lower noise amplitude; however, it 449 

exacerbates the imbalance in the distribution of picks among latitudes because the automatic 450 

picker returns less stable onset picks on part of high-𝜉 waveforms with lower signal-to-noise 451 

ratios (Figure 9b). In addition, for the IC anisotropy models from automatic and manual 452 

picks, the values of their anisotropy strength are approximately 3.3% and 3.1% and the 453 

lowest PKIKP travelling speed in the IC appears at around 67.5° and 66.0°, respectively. The 454 

values of parameters corrected for other mantle models are listed in Table S1. The fitting 455 

results shown in Figure 9 demonstrate that our CNN-based automatic picking method can 456 

reproduce the established knowledge of the IC anisotropy established in literature by 457 

painstaking analysts in the past with similar level of confidence. 4318 automatic picks with 458 
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high picking quality are returned in minutes, which are three times larger than the archive of 459 

manual picks. However, the CNN picker shows no improvement in picking high-latitude 460 

PKIKP arrivals (low 𝜉) compared to human analysts. In addition, as automatic picks tend to 461 

be slightly prior to their manual counterparts, their fitting curves show an observable bias at 462 

high 𝜉-angles with concentrated picks.  463 

 464 

Figure 9 PKIKP residuals obtained from the CNN picker and the fitting IC anisotropy 465 

models compared to manual picking. (a) plots all available manual picks and the CNN picks 466 

with a picking quality of over 0.4. 𝜉 is the angle between the Earth’s rotation axis and the 467 

bottoming point of PKIKP wave’s ray path, and ∆T represents the residual between picked 468 

PKIKP onsets and the ak135 predictions corrected for Earth’s ellipticity (Kennett & 469 

Gudmundsson, 1996) and mantle heterogeneity model DETOX-P3 (Hosseini et al., 2020). (b) 470 

shows the distribution of waveform data, manual picks, and high-quality CNN picks relative 471 

to 𝜉. Their respective numbers are annotated in the legend. The curves of fractional velocity 472 

as a function of 𝜉 (c) and 𝑐𝑜𝑠2𝜉 (d) fitted from the two category picks using the hierarchical 473 

Bayesian method are denoted in black and red, respectively. See more details about the fitting 474 



 22 

in the main text. The shadow zones denote the uncertainties of the fitting. For reference, a few 475 

previously published IC anisotropic models (Brett & Deuss, 2020; Morelli et al., 1986; 476 

Tkalčić et al., 2023) are plotted using dashed curves in different colors.  477 

 478 

4 Discussion 479 

It has been demonstrated that our CNN model picks PKIKP onsets nearly as well as 480 

experienced analysts. However, a MAE of approximately 0.5 s consistently exists in overall 481 

and individual event picking, higher than the picking error of current leading automatic 482 

pickers in the local scale, low to 0.1 s (Münchmeyer et al., 2022). It should be noted that we 483 

work with lower-frequency signals of 0.5-2.0 Hz in global events than over 5 Hz in local 484 

events and sample them at 40 Hz (t=0.025 s) rather than the usual 100 Hz ((t=0.01 s), 485 

leaving higher systematic errors in our picks. In addition, we generated a synthetic waveform 486 

dataset while training our network, expecting to simulate the IC attenuation due to the lack of 487 

manually picked PKIKP arrival data. Regarding the complexity and diversity of geological 488 

conditions and datasets on the global scale, it is challenging for our global picker to achieve 489 

the same high precision based on it as previous local-scale pickers using real data. 490 

It is also reasonable to see a minor deviation between automatic and manual picking as we 491 

consider its sources from two aspects. On the one hand, experienced human analysts can 492 

identify emergent seismic signals on noisy waveforms precisely by inspecting multiple 493 

frequencies and observing the source time functions using P wave arrivals at shorter 494 

epicentral distances. These procedures are necessary for measuring global and antipodal 495 

datasets (Tkalčić et al., 2023). Lacking supplementary information and limited in a fixed 496 

frequency band, the automatic picker struggles more to locate the emergent onsets than 497 

humans. On the other hand, however, the shortage of published labeled PKIKP waves cannot 498 

be ignored. Humans observe waveforms with their eyes and pick the onsets subjectively. The 499 

precision of manual picks varies among their authors. The automatic picker can ensure that 500 

onsets are picked immediately and consistently once they appear. Instead, humans can only 501 

pick them up until they become recognizable by eyes. This explains why the automatic picks 502 

tend to be earlier than their manual counterparts, with a mean deviation of 0.2 s (Figure 6c). 503 

In this study, we used a CNN architecture with a modest size. This network containing four 504 

convolutional layers is shallower in depths than recent state-of-the-art developments in local 505 

earthquake detection and phase picking, for example, PhaseNet with an up-sampling module 506 
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(Zhu & Beroza, 2019) and EQTransformer consisting of 56 layers (S. M. Mousavi et al., 507 

2020). Also, we used less training data, 300K synthetic waveforms (1.2M for EQTransformer 508 

and 780K for PhaseNet), to achieve our task. This is because our strategy is different from the 509 

local pickers above (see the description in Introduction) and our task is less complicated. We 510 

deal with large earthquakes that are documented in global earthquake catalogs (such as NEIC 511 

and GMTs). The global earth model can determine waveform windows that certainly contain 512 

PKIKP arrivals. Thus, the sole purpose of our network is to determine whether it can pick the 513 

seismic arrival onset already present in the windowed waveforms, not to determine their 514 

presence without any prior knowledge. This explains the satisfactory performance of the 515 

network, given its modest size.  516 

Besides picking individual waveforms, we also experimented with using our CNN to 517 

determine arrival onsets on stacked waveforms with higher signal-to-noise ratios. Firstly, the 518 

adaptive stacking method aligns similar waveforms by minimizing a misfit function defined 519 

as the overall difference with the simultaneous stack (Rawlinson & Kennett, 2004). Thanks to 520 

its great performance in waveform stacking, our picker can be applied to the stacked 521 

waveforms from stations in a regional network, potentially improving the precision. 522 

However, automatic picking on stacked waveforms is subjected to the precision of adaptive 523 

stacking and the risk of introducing systematic bias in the onset pick of every individual 524 

waveform of the network. Theoretically, individual waveform picking using a fine-trained 525 

network can prevent these issues. Hence, we prefer not to apply the picker on adaptively 526 

stacked waveforms.  527 

 528 

Figure 10 Distribution of manual picks and CNN picks under multiple quality levels 529 

relative to the sampling angle 𝜉 on a global PKIKP waveform dataset collected between 530 

2001-2020. We choose all mb >5.8 earthquakes occurring in the time interval 2001-2020 and 531 

download the corresponding PKIKP waveforms in the epicentral distance range of (a) 155° - 532 
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165° and (b) 165° - 180° from the IRIS Data Management Center. The catalogs of events and 533 

manual picks of PKIKP onsets are obtained from the ISC (Bondár & Storchak, 2011). We 534 

increase the quality (Q) threshold of CNN picks from 0.2, the criteria of precise picks chosen 535 

by experience, to 0.5, at which the number of CNN picks is comparable to manual picks. The 536 

upper margin of each quality interval bar is marked with dots. 537 

Next, to demonstrate the potential of our automatic picker in expanding the dataset 538 

measurements, we collected new PKP waveforms in two epicentral distance ranges, 165°-539 

180°, the range of antipodal stations as same as the present dataset, and 155°-165° to cover 540 

the whole IC, in all mb5.8+ earthquake events during the 20 years from 2001 to 2020 from 541 

the IRIS Data Management Center. Record numbers in the two new datasets are ~57K and 542 

~123K. Meanwhile, we searched their associated manual picks in the ISC database, which 543 

were reported by multiple authors with various tags. As implemented earlier in Section 3.2, 544 

our CNN network picked over half of the new large datasets, greatly expanding the PKIKP 545 

onset archive near the equator (Figure 10). The picking quality do provide a one-step strategy 546 

that allows us to filter the automatic picks according to research purposes. We can acquire 547 

more precise and credible onset picks close to human picking by setting a high threshold of 548 

quality as Section 3.2 or catch as many picks as possible with medium quality. Interestingly, 549 

both humans and the CNN automatic picker obtain relatively few picks from polar events. 550 

Despite being limited by the number of earthquakes and receivers at high latitudes and their 551 

data quality (Tkalčić, 2017), this illustrates the need for more careful consideration of 552 

regional differences in improving the picker. Further developed automatic pickers are 553 

expected to extend the usable data for studying the Earth’s IC with potentially unlocked 554 

datasets.  555 

We acknowledge the potential drawbacks when using the synthetic training dataset. On a 556 

positive note, the automatic picker performs well on the labeled waveforms (Figure 6) and 557 

the integration task (Figure 9). On the other hand, the gap between synthetic waveforms and 558 

real PKIKP waves cannot be filled. We introduced emergent arrivals in training by experience 559 

to consider the IC attenuation, which is inadequate and not what we expected when 560 

constructing an automatic picker. Collecting more labeled real waveforms sensitive to the IC 561 

and the Earth’s deep interior for training and testing the next iteration’s networks becomes 562 

more efficient thanks to the successful application of the automatic picker and the mechanism 563 

of picking quality control in this study. It is in our imminent plan to inspect manually and 564 

define the potentially unambiguous PKIKP onsets, which are initially picked by the present 565 
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CNN picker. This could save considerable time and effort as we will not need to visualize 566 

tens of thousands of noisy waveforms.  567 

The application of our CNN model in picking PKIKP onsets demonstrates the potential of 568 

using deep learning algorithms to facilitate IC studies. In addition to optimizing the automatic 569 

picker, we plan to develop new deep-learning-based models to predict PKIKP-PKPbc and 570 

PKIKP-PKPab differential travel times widely used in IC studies for different purposes (e.g., 571 

Attanayake et al., 2014; Creager, 1992; Niu & Chen, 2008; Shearer & Toy, 1991; Song & 572 

Helmberger, 1993). Most recently, a physics-informed neural network (PINN) was developed 573 

to model P wave travel times between any source-receiver pair in a global mantle model 574 

(Taufik et al., 2023). It shows significant advantages in saving storage and computing 575 

resources compared with traditional 3-D Earth velocity models. The high picking efficiency 576 

of our automatic picker demonstrated in this study provides strong support for obtaining a 577 

much larger PKP-wave differential travel time dataset than ever before. This helps us 578 

construct a new automated tool that can generate differential travel times based on any 579 

eligible coordinate pair input directly, thereby avoiding the processes of phase onset picking 580 

and computing Earth structures along the ray path. 581 

 582 

5 Conclusion 583 

The application of deep-learning algorithms has expanded from local earthquake seismology 584 

to structural seismology on global scales. In this work, however, we focused on the PKIKP 585 

waves traversing near the Earth’s center. The global dataset of PKIKP waves is crucial for 586 

exploring the Earth’s deep interior, particularly the Earth’s inner core. To expand the PKIKP 587 

onset archive and ensure its consistent quality across datasets, we employed a CNN network 588 

to pick the onsets of PKIKP waves automatically. Our CNN automatic picker, though simple 589 

in architecture, picked the majority of human-picked PKIKP onsets achieving human-level 590 

precision, thanks to the well-designed synthetic training dataset considering the features of 591 

PKIKP waves. Automatic picks show a consistent precision across earthquake events. Our 592 

automatic picker obtained 4,318 high-quality picks, three times the manual picks, out of 593 

8,208 PKIKP waveforms in just several minutes, demonstrating its efficiency in harnessing 594 

big global datasets compared to human analysts.  595 

The deep learning expanded PKIKP travel time dataset is expected to increase the current 596 

sampling coverage of the IC in places where data are available by at least an order of 597 



 26 

magnitude. Thus, it could reveal more details of the Earth’s interior. In an integration test, we 598 

selected IC anisotropy as one of the most prominent and well-documented features of the IC. 599 

The IC anisotropy model produced by the CNN-picked PKIKP travel times is similar to the 600 

existing ones based on previous meticulously hand-picked datasets. However, it should be 601 

clear that there are still notable advantages in experienced human analysts picking the arrivals 602 

from noisy waveforms, e.g., where the sampling paths are rare, particularly those originating 603 

from events and stations at high latitudes. They can use multiple frequency filters and look at 604 

supplementary information to distill information from a few valuable records.  605 

The performance of our initial deep-learning-based automatic picker on PKIKP waves and 606 

the previous applications on SS waves (Garcia et al., 2021) and  PmKP waves (Dong et al., 607 

2024) shed light on the path forward for deep Earth seismology harnessing large datasets of 608 

existing and new waveforms and information therein. These could trigger the need for more 609 

comprehensive analysis to support deep Earth models with adequate uncertainty estimates. 610 

Our future work will apply the automatic picker to new datasets and provide a more in-depth 611 

analysis of the results obtained from it to improve current IC anisotropy models, though the 612 

picker has to be further improved to learn IC characteristics better by introducing more real 613 

PKIKP data into training. Furthermore, we will explore the deep-learning approaches to other 614 

laborious tasks in deep Earth seismology, such as measuring differential travel times between 615 

first arrivals of phase pairs, such as ScS-S (Houser et al., 2008; S. Mousavi et al., 2021) or 616 

PcP-P waves sensitive to the lowermost mantle (Muir et al., 2022; Tkalčić & Romanowicz, 617 

2002). 618 

 619 

Data availability statement 620 

Synthetic teleseismic waveforms used for network training in this study are generated using 621 

Teleswavesim software package (Audet et al., 2019) available at 622 

https://zenodo.org/badge/latestdoi/204565459. All real records used in this study, including 623 

PKIKP phase and real noise waveforms, are downloaded from the Incorporated Research 624 

Institution for Seismology Data Management Center (IRIS DMC; 625 

https://ds.iris.edu/ds/nodes/dmc/) using the ObsPy package (Beyreuther et al., 2010). The 626 

PKIKP waveform dataset with hand-picked PKIKP onsets described in Section 2.1 is 627 

prepared by Tkalčić et al. (2023). The picked waveforms used for model testing include the 628 

following seismic networks: 2H (10.7914/SN/2H_2016), 3D (10.7914/SN/3D_2010), AI 629 

https://zenodo.org/badge/latestdoi/204565459
https://ds.iris.edu/ds/nodes/dmc/
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(10.7914/SN/AI), AK (10.7914/SN/AK), AT (10.7914/SN/AT), AU (10.26186/144675), AV 630 

(10.7914/SN/AV), BE (10.7914/SN/BE), BL (https://www.fdsn.org/networks/detail/BL), BR 631 

(https://www.fdsn.org/networks/detail/BR), C (https://www.fdsn.org/networks/detail/C), CB 632 

(10.7914/SN/CB), CH (10.12686/sed/networks/ch), CN (10.7914/SN/CN), CU 633 

(10.7914/SN/CU), CZ (10.7914/SN/CZ), ET (https://www.fdsn.org/networks/detail/ET), G 634 

(10.18715/GEOSCOPE.G), GE (10.14470/TR560404), GR (10.25928/mbx6-hr74), GT 635 

(10.7914/SN/GT), HK (https://www.fdsn.org/networks/detail/HK), IC (10.7914/SN/IC), II 636 

(10.7914/SN/II), IM (10.7914/vefq-vh75), IU (10.7914/SN/IU), JP 637 

(https://www.fdsn.org/networks/detail/JP), KN (10.7914/SN/KN), KZ (10.7914/SN/KZ), LD 638 

(10.7914/SN/LD), MN (10.13127/SD/fBBBtDtd6q), MY 639 

(https://www.fdsn.org/networks/detail/MY), NB (https://www.fdsn.org/networks/detail/NB), 640 

NE (10.7914/SN/NE), NL (10.21944/e970fd34-23b9-3411-b366-e4f72877d2c5), NM 641 

(https://www.fdsn.org/networks/detail/NM), NU (10.7914/SN/NU), ON (10.7914/SN/ON), 642 

PA (10.7914/SN/PA), PM (10.7914/SN/PM), PN (https://www.fdsn.org/networks/detail/PN), 643 

PS (https://www.fdsn.org/networks/detail/PS), RM (10.7914/SN/RM), TA (10.7914/SN/TA), 644 

TM (https://www.fdsn.org/networks/detail/TM), TO (10.7909/C3RN35SP), TW 645 

(10.7914/SN/TW), US (10.7914/SN/US), X4 (10.7914/SN/X4_2007), X5 646 

(https://www.fdsn.org/networks/detail/X5_2007), X6 (10.7914/SN/X6_2007), XB 647 

(10.7914/SN/XB_2009), XC (10.7914/SN/XC_2012), XD (10.7914/SN/XD_2002; 648 

10.7914/SN/XD_2007), XE (10.7914/SN/XE_2009), XG (10.7914/SN/XG_1999), XH 649 

(10.7914/SN/XH_2008), XJ (10.15778/RESIF.XJ2009), XN (10.7914/SN/XN_2008), XT 650 

(10.7914/SN/XT_2003), XW (10.7914/SN/XW_1997), YC (10.7914/SN/YC_2000; 651 

10.7914/SN/YC_2006), YE (10.7914/SN/YE_2011), YG (10.7914/SN/YG_2016), YM 652 

(10.7914/SN/YM_2006), YP (10.7914/SN/YP_2009), YS (10.7914/SN/YS_2009), YT 653 

(10.7914/SN/YT_2007), YZ (10.7914/SN/YZ_2009), Z8 (10.7914/SN/Z8_2006), ZI 654 

(10.7914/SN/ZI_2011), ZL (10.7914/SN/ZL_2007), ZM (10.7914/SN/ZM_2007), ZQ 655 

(10.7914/SN/ZQ_2001), ZV (10.7914/SN/ZV_2008). The manual picks of the expanded 656 

datasets in Discussion are from the International Seismological Centre (ISC) Bulletin 657 

(https://www.isc.ac.uk/iscbulletin/search/arrivals/). The model of the convolutional neural 658 

network is built using the TensorFlow package (Abadi et al., 2016; 659 

https://www.tensorflow.org/), and the figures are made using the matplotlib package (Hunter, 660 

2007).  The codes, trained model parameters, and training datasets will be made available 661 

when the paper is considered for later stages.  662 

https://www.isc.ac.uk/iscbulletin/search/arrivals/
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