References
[1] W. Bucci and N. Freedman, “The language of depression,”Bull. Menninger Clin. , vol. 45, no. 4, pp. 334–358, 1981,
Accessed: Nov. 18, 2022. [Online]. Available:
https://search.proquest.com/openview/d804439a2c70467603bbdf0c20a3f31a/1?pq-origsite=gscholar&cbl=1818298
[2] D. E. Losada and F. Crestani, “A test collection for research
on depression and language use,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) , 2016, vol. 9822 LNCS, pp. 28–39.
doi: 10.1007/978-3-319-44564-9_3.
[3] W. Zaghouani, “A Large-Scale Social Media Corpus for the
Detection of Youth Depression (Project Note),” in Procedia
Computer Science , 2018, vol. 142, pp. 347–351. doi:
10.1016/j.procs.2018.10.483.
[4] A. Vij and J. Pruthi, “An automated Psychometric Analyzer based
on Sentiment Analysis and Emotion Recognition for healthcare,” inProcedia Computer Science , 2018, vol. 132, pp. 1184–1191. doi:
10.1016/j.procs.2018.05.033.
[5] S. Almouzini, M. Khemakhem, and A. Alageel, “Detecting Arabic
Depressed Users from Twitter Data,” in Procedia Computer
Science , 2019, vol. 163, pp. 257–265. doi:
10.1016/j.procs.2019.12.107.
[6] A. Priya, S. Garg, and N. P. Tigga, “Predicting Anxiety,
Depression and Stress in Modern Life using Machine Learning
Algorithms,” in Procedia Computer Science , 2020, vol. 167, pp.
1258–1267. doi: 10.1016/j.procs.2020.03.442.
[7] J. L. Feuston and A. M. Piper, “Beyond the coded gaze:
Analyzing expression of mental health and illness on instagram,”Proc. ACM Human-Computer Interact. , vol. 2, no. CSCW, Nov. 2018,
doi: 10.1145/3274320.
[8] E. L. Murnane, T. G. Walker, B. Tench, S. Voida, and J. Snyder,
“Personal informatics in interpersonal contexts: Towards the design of
technology that supports the social ecologies of long-term mental health
management,” Proc. ACM Human-Computer Interact. , vol. 2, no.
CSCW, Nov. 2018, doi: 10.1145/3274396.
[9] J. A. Pater, B. Farrington, A. Brown, L. E. Reining, T. Toscos,
and E. D. Mynatt, “Exploring indicators of digital self-harm with
eating disorder patients: A case study,” Proceedings of the ACM
on Human-Computer Interaction , vol. 3, no. CSCW. Association for
Computing Machinery, Nov. 01, 2019. doi: 10.1145/3359186.
[10] X. Xu et al. , “Leveraging Routine Behavior and
Contextually-Filtered Features for Depression Detection among College
Students,” Proc. ACM Interactive, Mobile, Wearable Ubiquitous
Technol. , vol. 3, no. 3, pp. 1–33, Sep. 2019, doi: 10.1145/3351274.
[11] A. Trifan, R. Antunes, S. Matos, and J. L. Oliveira,
“Understanding depression from psycholinguistic patterns in social
media texts,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) , 2020, vol. 12036 LNCS, pp. 402–409. doi:
10.1007/978-3-030-45442-5_50.
[12] P. Mathur, R. Sawhney, S. Chopra, M. Leekha, and R. Ratn Shah,
“Utilizing temporal psycholinguistic cues for suicidal intent
estimation,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) , 2020, vol. 12036 LNCS, pp. 265–271. doi:
10.1007/978-3-030-45442-5_33.
[13] X. Wang, C. Zhang, Y. Ji, L. Sun, L. Wu, and Z. Bao, “A
depression detection model based on sentiment analysis in micro-blog
social network,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) , 2013, vol. 7867 LNAI, pp. 201–213. doi:
10.1007/978-3-642-40319-4_18.
[14] A. Benton, M. Mitchell, and D. Hovy, “Multitask learning for
mental health conditions with limited social media data,” in 15th
Conference of the European Chapter of the Association for Computational
Linguistics, EACL 2017 - Proceedings of Conference , 2017, vol. 1, pp.
152–162. doi: 10.18653/v1/e17-1015.
[15] L. Banovi´cbanovi´c, V. F. Fatori´c, and D. Rakovac, “How soon
can we detect depression?” Accessed: Nov. 18, 2022. [Online].
Available:
https://www.fer.unizg.hr/_download/repository/TAR-2019-ProjectReports.pdf#page=7
[16] M. Al-Mosaiwi and T. Johnstone, “In an Absolute State:
Elevated Use of Absolutist Words Is a Marker Specific to Anxiety,
Depression, and Suicidal Ideation,” Clin. Psychol. Sci. , vol. 6,
no. 4, pp. 529–542, Jul. 2018, doi: 10.1177/2167702617747074.