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Abstract

This study introduces the Subspace Rotation Algorithm (SRA), an innovative gradient-
free method designed to discover the global optimal weight matrix. The SRA consists
of two fundamental algorithms: the Left Subspace Rotation Algorithm (LSRA) and the
Right Subspace Rotation Algorithm (RSRA). The combination of LSRA and RSRA,
in two formats, LSRA-RSRA and RSRA-LSRA, can harness the advantages of both
individual algorithms, resulting in enhanced performance.

Our observations reveal that shallow and wide Multilayer Perceptrons (MLP), trained
using RSRA-LSRA, achieve higher training accuracy compared to the Backpropagation
(BP) algorithm. Moreover, when combining SRA with the BP algorithm, a remarkable
impact on training MLP models is observed. Our experiments demonstrate that the BP
algorithm may become trapped in local optima, while RSRA-LSRA, though capable of
escaping local optima, may not fully realize its potential when the number of hidden
nodes is limited. The synergy of RSRA-LSRA and the BP algorithm allows for the
utilization of the advantages from both approaches, achieving optimal MLP performance
with fewer hidden nodes.

Keywords: Subspace Rotation Algorithm, Backpropagation,Global Optimization,

Multilayer Perceptrons

1. Introduction

Deep learning has brought about a revolution in various fields, including computer vision
[1], natural language processing [2], robotics [3], healthcare [4], and finance [5]. Training
deep neural network models, such as the Multiple Layer Perception (MLP) [6], Convolutional
Neural Network (CNN) [7], and Recurrent Neural Network (RNN) [8], involves solving
optimization problems that aim to minimize objective functions based on the connection
weights of the networks [9]. Unfortunately, these optimization problems come with inherent
limitations, including non-linearity, non-convexity, the presence of numerous local minima,
and broad regions linked to narrow ones.

The motivation behind this research is to address the challenges associated with gradient-
based training algorithms. Many state-of-the-art methods rely on the error backpropaga-
tion (BP) algorithm, which utilizes gradients to update parameters. However, this approach
encounters several issues, including the problems of vanishing and exploding gradients, dif-
ficulties in handling non-differentiable nonlinearities, and managing parallel weight updates
across layers [10]. As a result, researchers have explored alternative training algorithms,
including the Hilbert-Schmidt Independence Criterion (HSIC) bottleneck-based approach
[11], the online alternating minimization approach [12], simultaneous perturbation stochas-
tic approximation (SPSA) [13], and using the energy function as the objective function
[14].

However, these newly developed methods also face challenges when it comes to finding
global optimization solutions for non-convex problems. Drawing inspiration from the success
of signal processing techniques [15, 16] in tasks such as dimensionality reduction [17], noise
reduction [18], and feature extraction [19] and integrating the concepts of signal subspace
[20], noise subspace [21], and the subspace rotation approach [22], this paper presents a
gradient-free approach for finding global optimization solutions in neural networks. This
approach allows for the differentiation and separation of the underlying data structure from
unwanted variations or noise.

In this work, our contributions can be summarized as follows:
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(1) We introduce the Subspace Rotation Algorithm (SRA), a gradient-free approach
designed for training neural network models. SRA addresses common issues associ-
ated with BP algorithms, such as gradient vanishing, explosion, or slow convergence,
while seeking global optimal solutions.

(2) We conduct an in-depth exploration of the characteristics of the Left Subspace Ro-
tation Algorithm (LSRA) and the Right Subspace Rotation Algorithm (RSRA).
Our simulation results reveal that LSRA tends to exhibit greater stability when
training MLP as the classifier. Additionally, by combining these two individual
algorithms, LSRA-RSRA and RSRA-LSRA, we harness the advantages of both.
Notably, our experimental findings demonstrate that, in general, RSRA-LSRA out-
performs LSRA-RSRA.

(3) We achieve state-of-the-art performance for MLP models on the MNIST and Fashion-
MNIST datasets by combining the RSRA-LSRA with the BP algorithm.

The rest paper is structured as follows. Section 1 initiates our discussion by presenting an
introduction to deep learning models and their associated BP algorithms. Additionally, we
outline the motivation behind this research and highlight the specific contributions of our
work. Section 2 delves into the core of our research, introducing two distinct SRA: the LSRA
and the RSRA. Moreover, we provide a practical example to demonstrate the effectiveness
of these algorithms. In Section 3, we meticulously design and conduct a series of four ex-
periments aimed at evaluating the efficacy and efficiency of the SRA. This comprehensive
assessment encompasses LSRA, RSRA, LSRA-RSRA, and RSRA-LSRA approaches, along
with the BP algorithm. Our experiments involve the training of a variety of MLP models us-
ing diverse datasets, including MNIST, Fashion-MNIST, CIFAR10, and CIFAR100. Section
4, offers our concluding remarks. We summarize our key observations, noting that LSRA
exhibits greater stability than RSRA in most scenarios. We also highlight the capacity
of RSRA-LSRA and LSRA-RSRA to harness the strengths of individual algorithms, with
RSRA-LSRA generally outperforming LSRA-RSRA. Most notably, we conclude that com-
bining the RSRA-LSRA with the BP algorithm yields exceptional performance in training
MLP models, surpassing the individual SRA and BP algorithm.

2. Subspace Rotation Algorithm: Discover the Optimal Solution without Gra-
dient

2.1. Left Subspace Rotation Algorithm and Right Subspace Rotation Algorithm

The weight matrix of a neural network is connected to two layers of nodes, namely, the
input layer of nodes and the output layer of nodes. If the input layer of nodes is used to
evaluate and update the weight matrix, it is known as the LSRA. On the other hand, if it is
the output layer of nodes that is used to evaluate and update the weight matrix, it is known
as the RSRA. However, apart from this difference, these two algorithms are similar to each
other. Hence, both these algorithms are discussed together in the following sections.

Algorithm 1 and 2 describe the LSRA and RSRA for MLP, respectively. These algorithms
take as input the samples X, labels Y, and the number of hidden layers L in the MLP model,
and output the weight matrices in the form of a list, known as Weight List.

The algorithm initializes the weight list with orthogonal weight matrices and updates each
weight matrix using the SRA (LSRA or RSRA) sequentially. In each update, it computes
the output of the MLP up to a specific layer using the ForwardPass (LeftForwardPass
or RightForwardPass) procedure and computes the reversed output of the MLP from
the last layer up to the specific layer using the BackwardPass (LeftBackwardPass or
RightBackwardPass) procedure. The algorithm executes the pseudoinverse operation on
forward output and multiplies the obtained result with the backward output to compute a
distance matrix. This matrix is decomposed into U, D, and V matrices using the Singular



Algorithm 1 Left Subspace Rotation Algorithm For MLP

Input: Samples X, Labels Y, Number of Layers L
Output: weight matrix list Weight List
Initialization: initialize orthogonal weight matrix and added it into the Weight List
one by one
for index = 0 to L do

f output = LeftForwardPass(X, index)

b_output = LeftBackwardPass(Y, index, L)

dist _matrix = PINV(f output) x b_output

U, D, V = SVD(dist _matrix)

Weight List[index] = U x V x Weight LIST|[index]
end for
return Weight List

LeftForwardPass(X, index)
Input: Samples X, Layer Index: index
Output: Output of the Specific Layer
if index = 0 then
f output =X
end if
for ix = 0 to index do
f output = tanh( X x WeightList[ix])
X =f output
end for
return f output

LeftBackwardPass(X, index, L)
Input: Labels Y, Layer Index: index, Length of Weight List: L
Output: Reversed Output of the Specific Layer
for ix = L to L - index do
b_output =Y x WeightList[ix].T
Y = atanh(b_output)
end for
return b_output

Value Decomposition Algorithm, where U is an orthogonal matrix that represents the left
singular vectors of the distance matrix, D is a diagonal matrix that contains the singular
values of the distance matrix, and V is the conjugate transpose of an orthogonal matrix that
represents the right singular vectors of the distance matrix. Then, the U and V matrices
are used to update the weight matrix for the specific layer.

Additionally, the ForwardPass (LeftForwardPass or RightForwardPass) proce-
dure takes as input the samples X and the index of the layer and computes the output
of the MLP up to the indexed layer from the bottom to the top. The BackwardPass
(LeftBackwardPass or RightBackwardPass) procedure takes as input the labels Y, the
layer index, and the length of the weight list L, and computes the reversed output of the
MLP up to the indexed layer from the top to the bottom. It is essential to note that the
tanh and atanh are inverse functions. Moreover, the domain of atanh is (-1, 1), and
during the calculation of backward values, it is possible that the backward value cannot be



Algorithm 2 Right Subspace Rotation Algorithm For MLP

Input: Samples X, Labels Y, Number of Layers L
Output: weight matrix list Weight List
Initialization: initialize orthogonal weight matrix and added it into the Weight List
one by one
for index = 0 to L do

f output = RightForwardPass(X, index)

b_output = RightBackwardPass(Y, index, L)

dist _matrix = PINV(f output) x b_output

U, D, V = SVD(dist _matrix)

Weight List[index| = Weight LIST[index] x U x V
end for
return Weight List

RightForwardPass(X, index)
Input: Samples X, Layer Index: index
Output: Output of the Specific Layer
for ix = 0 to index+1 do

f output = X x WeightList[ix]

X = tanh(f output)
end for
return f output

RightBackwardPass(X, index, L)
Input: Labels Y, Layer Index: index, Length of Weight List: L
Output: Reversed Output of the Specific Layer
if index = L -1 then
b _output =Y
end if
for ix = L-1 to L - index do
b_output = atanh(Y x WeightList[ix].T)
Y =b_output
end for
return b_output

calculated because the input is outside the domain of (-1, 1), which correspond to —oco or
+00. In such situation, we can clip the output value of atanh in the range (-100, 100).

2.2. Mathematical Analysis for the Subspace Rotation Algorithm

Assuming there are n samples, each represented as x; € RP, and all n samples can be
combined into a matrix X € RP*™. Let initial weight matrix be W € RP*". If the Frobenius
norm is used to calculate the distance between the original matrix and the transformed
matrix, the issue can be reformulated as an optimization problem:

min || X - WW?X| (2.1)
WeO(p,r)
Solution: Without loss of generality, assuming p > 7, B = WW7TX. According to the rank
properties of matrices, we can obtain rank(B) = r. Equation 2.1 can be rewritten in the
following form:
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According to the Eckart-Young-Mirsky theorem, let X = UDVT € RP*" n > p. If
we aim to find a matrix B with rank r, where r < p, we can decompose U, D, and V in the
following way:

Dy 0

0 Do
where Uy is m X v, Dy is r X r, and V; is n X r. Then the rank-r matrix B, obtained from
the truncated singular value decomposition is:

U:[Ul,U2],D:[ },V:[thﬂ

B=U,D\V{" (2.3)

Now, let us return to the original target function, where we can make an observation:

B=wWw?'X =ww?ubpv" =U, D,V (2.4)
In this case, the above equation will be successful only when W = U;. Thus, U; is the
analytic solution we are looking for.

3. Experiment and Analysis
3.1. Sample Preparation

Before proceeding to the simulation part, it is necessary to describe the approach of
preparing the samples. For the samples from the MNIST dataset, the Fashion-MNIST
dataset, the CIFAR10 dataset, and CIFAR100 dataset, the RGB color, which is ranged
from 0 to 255, will be scaled to the range of -1 to 1.

3.2. Experiment Design

Four experiments have been purposefully designed to assess the efficacy and effective-
ness of the following algorithms: LSRA, RSRA, LSRA-RSRA, RSRA-LSRA, and BP (with
different optimizers).

(1) Robustness of SRA: The first experiment involves designing three MLP models
with different architectures, which are trained using LSRA, RSRA, LSRA-RSRA,
and RSRA-LSRA on the MNIST dataset. The objective of this experiment is to
identify the most robust and optimal SRA among LSRA, RSRA, LSRA-RSRA, and
RSRA-LSRA.

(2) Pros and Cons of RSRA-LSRA and BP: The second experiment features a two-
layer MLP architecture (with 10000 hidden nodes), trained using RSRA-LSRA and
BP algorithms on four different datasets: MNIST, Fashion-MNIST, CIFAR10, and
CIFAR100. For the BP algorithm, we utilize the SGD optimizer with a learning rate
of 5e—3 and a momentum of 0.2, implementing early stopping to prevent overfitting.
This experiment aims to uncover the strengths and weaknesses of RSRA-LSRA and
BP algorithms in training shallow and wide MLP models.

(3) Model Complexity and Overfitting: The third experiment designs four two-
layer MLP models with varying numbers of hidden nodes, which are trained using
RSRA-LSRA and BP algorithms on the CIFAR100 dataset. For the BP algorithm,
we employ the SGD optimizer with a learning rate of le — 2 and a momentum of
0.9. Early stopping is not implemented, and the training epoch is fixed at 500. The
purpose of this experiment is to explore the relationship between model complexity
and overfitting for RSRA-LSRA and BP algorithms.
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(4) Combining SRA and BP Algorithm: The fourth experiment introduces a two-
layer MLP model (with 500 hidden nodes), trained using RSRA-LSRA, BP, and
COM (combining RSRA-LSRA and BP algorithms) on two datasets: MNIST and
Fashion-MNIST. For the BP algorithm, we employ the Adam optimizer with a
learning rate of le — 3, without early stopping. The aim of this experiment is to
compare the performance of RSRA-LSRA, BP, and COM algorithms.

3.2.1. Explore LSRA, RSRA and the combination of LRSA and RSRA

Table 1. The Accuracy of MLP Trained by LSRA, RSRA, LSRA-RSRA, and RSRA-LSRA

LSRA RSRA LSRA-RSRA RSRA-LSRA
Train Acc Test Acc | Train Acc Test Acc | Train Acc Test Acc | Train Acc Test Acc
MLP 98.01 96.92 44.87 45.58 98.27 97.18 98.32 97.16
MLPI 86.91 86.78 43.20 43.11 83.55 84.05 87.81 87.66
MLPBI 94.47 94.33 94.56 94.20 93.97 93.57 94.64 94.16

I The architecture of MLP is 784-5000-10, with a total of 3.97 x 106 parameters.

2 The architecture of MLP is 784-600-10-600-10, with a total of 4.88 x 10° parameters.

3 The architecture of MLP is 784-1200-1400-1200-1000-800-600-400-200-10, with a total of 7.10 x 10°
parameters.

SRA is a newly developed algorithm that has not been fully explored. It essentially
comprises two variants: the LSRA and the RSRA. These two algorithms can be used indi-
vidually or in combination. Before comparing them with the BP algorithm, it is necessary
to discuss how to achieve optimal performance with SRA.

In this section, our aim is to evaluate the effectiveness of LSRA, RSRA, and the combi-
nation of LSRA and RSRA. To do this, we intentionally designed three MLP models and
trained them on the MNIST dataset using LSRA, RSRA, LSRA-RSRA, and RSRA-LSRA,
respectively.

The first MLP model (784-5000-10) is a shallow model with a wider hidden layer. It
is used to test whether SRA can perform better with a shallow model. The second MLP
model (784-600-10-600-10) is slightly deeper, with a bottleneck in the middle hidden layer,
to determine whether the SRA can handle non-standard MLP architectures effectively. The
third MLP model (784-1200-1400-1200-1000-800-600-400-200-10) is a deep neural network
with smoothly changing hidden layers. It aims to assess the performance of SRA on deep
neural networks.

The experimental results are quite inspiring. For MLP with smoothly changing hidden
layers, where the number of hidden nodes gradually changes, both LSRA and RSRA exhibit
almost the same performance, as shown in the third row of Table 1. However, for MLP with
rapidly changing hidden layers, LSRA outperforms RSRA, as demonstrated in the first and
second rows of Table 1.

Furthermore, when MLP are trained using LSRA-RSRA (alternating training with LSRA
and RSRA until all layers are updated) or RSRA-LSRA (alternating training with RSRA
and LSRA until all layers are updated), they generally exhibit mixed performance, as shown
in Table 1. Essentially, RSRA-LSRA and LSRA-RSRA combine the strengths of LSRA and
RSRA. Therefore, their effectiveness is similar to LSRA, which proves to be a more stable
algorithm than RSRA in almost all cases. Notably, RSRA-LSRA subtly outperforms LSRA-
RSRA, as indicated in Table 1.

3.2.2. Subspace Rotation Algorithm Versus Backpropagation Algorithm

As discussed in Section 3.2.1, the SRA performed surprisingly well on shallow and wide
MLP models, which runs counter to conventional wisdom in the field of deep learning. Now,
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Figure 1. Loss Value and Accuracy of the Model on Different Datasets

Table 2. The Performance of MLP Trained on MNIST, Fashion-MNIST, CIFAR10, and CIFAR100 Dataset
by RSRA-LSRA and BP

RSRA-LSRA BP
Train Acc Train Loss Test Acc Test Loss | Train Acc Train Loss Test Acc Test Loss
MNIST [1] 99.345 0.4291 97.82 0.4291 98.59 0.0119 97.64 0.0172
Fashion MNIST [1] 94.44 0.9592 88.47 0.9592 89.68 0.0596 86.86 0.0736
CIFARI10 [2] 72.68 0.9641 42.11 0.9681 67.55 0.1705 49.53 0.2365
CIFARI100 [2] 86.00 0.9962 21.48 0.9968 23.02 0.0319 18.26 0.0329

1 The architecture of MLP is 784-10000-10, with a total of 7.94 x 106 parameters. The activation function
is tanh function.

2 The architecture of MLP is 3072-10000-10, with a total of 3.082 x 107 parameters. The activation
function is tanh function.

we aim to compare RSRA-LSRA with BP algorithm for training shallow and wide MLP
models. These models have an architecture of X — 10000 — Y, where X represents the input
nodes of the MLP, and Y represents the output nodes of the MLP.

All four datasets, including MNIST, Fashion-MNIST, CIFAR10, and CIFAR100, are used
to train the MLP models. From a model accuracy perspective, for MNIST, Fashion-MNIST,
and CIFAR100 datasets, both the training and testing accuracy of the RSRA-LSRA are
better than that of the BP algorithm. However, for the CIFAR10 dataset, the RSRA-LSRA
achieves higher training accuracy but fails to outperform the BP algorithm in terms of
testing accuracy. The explanation for this behavior is related to the signal subspace and
noise subspace. In relatively clean datasets like MNIST and Fashion-MNIST, the RSRA-
LSRA can effectively extract the major signal subspace from the training data, resulting
in good performance on the testing dataset. In other words, the signal subspace from
the training data has a significant overlap with the signal subspace from the testing data.
However, for CIFAR10 and CIFAR100 datasets, which contain a considerable amount of
noise, the subspace extracted by the RSRA-LSRA from the training data also includes a
substantial amount of noise subspace. Consequently, the MLP models do not perform well



on the testing dataset, and for CIFAR10 and CIFAR100, there is a notable drop in accuracy
from training to testing.

Although CIFAR10 and CIFAR100 share some similarities, they each have distinct char-
acteristics. As shown in Table 2, in the case of CIFAR10, with 10 output nodes, the SRA
struggles to accommodate the noise subspace, leading to better training accuracy (72.68%)
than the BP algorithm (67.55%), but lower testing accuracy (42.11%) compared to the test-
ing accuracy (49.53%) achieved by BP algorithm. However, in the case of CIFAR100, which
has 100 output nodes, the subspace extracted by the RSRA-LSRA is more extensive and
can better accommodate the noise subspace. The RSRA-LSRA achieves significantly better
training accuracy (86.00%) than the BP algorithm (23.03%). While there is a substantial
drop in accuracy from training to testing, the RSRA-LSRA still outperforms the BP algo-
rithm, achieving a testing accuracy of 21.48%, which is higher than 18.25% obtained from
the BP algorithm. However, due to the early stopping technique we applied in BP algo-
rithm, we can not conclude that BP algorithm could not perform better than RSRA-LSRA
on CIFAR100 dataset.

In terms of loss value, for the BP algorithm, the loss value is closely related to accuracy.
However, for the RSRA-LSRA, the loss value achieved by the mean square error (MSE)
algorithm does not accurately reflect accuracy. In general, the loss value (MSE value) for
the RSRA-LSRA is larger than the loss value for the BP algorithm. For the BP algorithm,
if there is a significant difference between training and testing accuracy, this is also reflected
in the loss value. For the RSRA-LSRA, regardless of the difference between training and
testing accuracy, the training and testing loss values remain similar, as shown in Figure 1.
This suggests that the models trained by the RSRA-LSRA can be fine-tuned with the BP
algorithm and improve the accuracy further.

3.2.3. Model Complexity and Overfitting
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Figure 2. MLP Models with Different Complexity Trained on CIFAR100 Dataset

For the clean datasets, such as MNIST and Fashion-MNIST, the growing complexity of
the model does not seem to have a significant impact on overfitting. However, when it
comes to noisy dataset, such as CIFAR10 and CIFAR100 datasets, the presence of noise in
the samples amplifies the influence of model complexity on testing performance.

As depicted in the first chart (top-left) of Figure 2 and in Table 3, which represents
MLP models with varying complexities trained by RSRA-LSRA. It is observed that as



Table 3. The Performance of MLP Models with Different Complexity Trained on CIFAR100 Dataset by
RSRA-LSRA and BP

RSRA-LSRA BP
Train Acc Train Loss Test Acc Test Loss | Train Acc Train Loss Test Acc Test Loss
MLP [1 47.07 0.9892 11.57 0.9909 39.602 0.0301 20.45 0.4029
MLP [2 69.65 0.9838 20.31 0.9871 54.04 0.0247 23.02 0.4002
MLP (3] 86.00 0.9962 21.48 0.9968 53.45 0.0260 22.57 0.4008
MLP [4] 96.36 0.9975 19.75 0.9978 51.11 0.0277 21.39 0.4071

I The architecture of MLP is 3072-1000-100, with a total of 3.172 x 10% parameters. The activation

function is tanh function.
2 The architecture of MLP is 3072-5000-100, with a total of 1.586 x 107 parameters. The activation

function is tanh function.
3 The architecture of MLP is 3072-10000-100, with a total of 3.172 x 107 parameters. The activation

function is tanh function.
4 The architecture of MLP is 3072-20000-100, with a total of 6.344 x 107 parameters. The activation

function is tanh function.

the complexity increases, indicated by the number of hidden nodes, the training accuracy
of models trained by RSRA-LSRA also rises, ranging from 47.07% to 96.36%. In theory,
a similar trend should be expected for models trained by the BP algorithm. However,
considering the actual learning rate, within 500 epochs, the MLP with 10000 hidden nodes
performed the best among all models trained by the BP algorithm, achieving a training
accuracy of 54.04% and a testing accuracy of 23.02%. Nonetheless, when considering only
the training accuracy, MLP models trained by RSRA-LSRA can outperform MLP models
models trained by BP, as shown in the first and second charts in Figure 2.

However, when we account for testing accuracy, the performance of MLP models trained
by BP tends to surpass MLP models trained by RSRA-LSRA. When combining both training
and testing accuracy, it becomes evident that RSRA-LSRA demonstrates strong learning
capabilities compared to the BP algorithm. Thus, the RSRA-LSRA may be more sensitive
to the general noise present in the sample space, while it is expected to be robust to outliers
within the samples.

3.2.4. Combining SRA and BP Algorithms
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Figure 3. Loss Value and Accuracy of the Model on MNIST and Fashion-MNIST Dataset
(Please note, for BP algorithm, the loss values of the first 3 epochs are omitted since it

is too large)

As analyzed in the previous section, the SRA approach can achieve the global optimal
subspace for the training dataset. Consequently, when the MLP model is sufficiently com-
plex, it can achieve impressive performance in terms of training accuracy. However, this
can also lead to overfitting. In contrast, the BP algorithm focuses on finding local optimal
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Table 4. The Performance of MLP Trained by Different Algorithms|[1]

RSRA-LSRA BP COM|2]
Train A Train L|3||Test A Test L|Train A Train L|{Test A Test L|Train A Train L|{Test A Test L
MNIST 72.76 55.26 73.25 56.19| 10.07 0.3631 | 11.35 0.3569| 99.67 0.0134 | 97.53 0.0319
F-MNIST| 79.31 87.98 | 77.86 87.74| 80.17 0.1105|69.33 0.1913| 98.75 0.0221 | 86.52 0.1029

I The architecture of MLP is 784-500-10, with a total of 3.97 x 10° parameters. The activation function
is tanh function.

2 The MLP model is adjusted by the RSRA-LSRA for three times, and then trained by BP algorithm
with Adam optimizer.

3 Here, “A” means “Accuracy” and “L” means “Loss”.

solutions. While it may not discover the global optimum, it can fine-tune the model and
steadily decrease the loss value until it reaches a local minimum. The idea behind combining
the SRA and the BP algorithm is to leverage the strengths of both approaches and find a
global optimization solution for the model.

To illustrate the advantages of combining the BP and SRA, we design a standard MLP
model (784-500-10) with weight matrix initialized uniformly in the range [0, 1]. In this
scenario, if we were to apply the BP algorithm to train the model, it would become trapped
in a local minimum. As shown in Table 4 and Figure 3, we train the MLP model using the
Adam Optimizer with a learning rate set to le — 3.

For the MNIST dataset, the Adam optimizer cannot escape local minimization even after
300 epochs. The training accuracy fluctuates around 10.07%, and the testing accuracy
remains at approximately 11.35%, essentially at the level of random guessing. Both the
training and testing loss values hover around 0.36. For the Fashion-MNIST dataset, the
situation is slightly better. After 500 epochs, the model achieves a training accuracy of
80.17% and a testing accuracy of 69.33% with loss values of 0.1105 and 0.1913, respectively.

As shown in Table 4, the RSRA-LSRA, while capable of escaping local minimization,
cannot fully realize its potential and reach optimal performance. For the MNIST dataset, it
achieves a training accuracy of 72.76% and a testing accuracy of 73.25%. For the Fashion-
MNIST dataset, it obtains a training accuracy of 79.31% and a testing accuracy of 77.86%.
Although the loss value is not directly related to accuracy for the RSRA-LSRA, it is notably
higher than usual.

When we initialize the weight matrix using the same scheme, the MLP model, after being
adjusted by RSRA-LSRA three times, is trained by the BP algorithm with the Adam op-
timizer. For the MNIST dataset, within 100 epochs, the training accuracy reaches 99.67%,
and the testing accuracy is 97.53%. For the Fashion-MNIST dataset, within 400 epochs, the
training accuracy reaches 98.75%, surpassing most advanced neural network architectures
with highly complex structures, and the testing accuracy is 86.52%. For both the MNIST
and Fashion-MNIST datasets, the combination of training algorithms achieves better per-
formance than individual BP or RSRA-LSRA.

4. Conclusion and Future Work

This study introduces a gradient-free SRA to train the neural network. The algorithm
leverages SVD to calculate the rotation matrix and update the weight matrix to achieve an
optimal representation of sample patterns.

Regarding SRA, two fundamental types exist: LSRA and RSRA. LSRA and RSRA
can be applied separately or in combination to train MLP models. Each approach has
a distinct effect on the performance of MLP models. The experiments demonstrate that
RSRA-LSRA can achieve optimal solutions and is more stable than other approaches when
training a variety of MLP models, including shallow MLP, deep MLP, and deep MLP with
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a bottleneck layer. Therefore, when compared with the BP algorithm, the RSRA-LSRA
scheme is selected.

Two-layer MLP models with 10000 hidden nodes are designed to evaluate the effectiveness
of the RSRA-LSRA and the BP algorithm. It is observed that for shallow and wide MLP
models, the RSRA-LSRA can achieve higher training accuracy than the BP algorithm. For
less noisy datasets, such as MNIST and Fashion-MNIST, the testing accuracy achieved by
the RSRA-LSRA is better than the model trained by the BP algorithm. However, for noisy
datasets, such as CIFAR10 and CIFAR100, since the existence of overfit, the testing accuracy
of the model trained by RSRA-LSRA is worse than model trained by BP algorithm.

To study the relationship between model complexity and overfitting, the most noisy
dataset, CIFARI100 is chosen. Four two-layer MLP models with hidden node numbers:
1000, 5000, 10000, and 20000, are designed and trained using the RSRA-LSRA and the BP
algorithm with the SGD optimizer. With the RSRA-LSRA, the training accuracy grows
quickly with increasing complexity, from 47.07% to 96.36%. However, the testing accuracy
does not show the same trend due to the impact of overfitting. The best testing accuracy
is for the MLP with 10000 hidden nodes, which achieves 21.48% testing accuracy. For the
BP algorithm, the MLP model with 5,000 hidden nodes achieves optimal performance, with
54.04% training accuracy and 23.02% testing accuracy. In this case, both algorithms cause
overfitting.

The combination of SRA and the BP algorithm demonstrates an extraordinary effect
on training MLP models with weight matrices initialized with a uniform distribution in the
range [0, 1]. The experiment shows that the BP algorithm can become stuck in local optimal
points, and RSRA-LSRA, while capable of escaping local optimal solutions, cannot reach its
full potential when the hidden node number is limited—in other words, when the subspace is
limited. The combination of RSRA-LSRA and the BP algorithm leverages both algorithms
to achieve optimal performance for MLP models with a relatively smaller number of hidden
nodes.

In the future, we aim to apply this approach to different network architectures, such as
CNN, LSTM, and GNN. Simultaneously, we plan to reduce the time complexity and space
complexity of the SRA. We may explore alternative methods to find the rotation matrix for
the weight matrix.
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