
Submitted to Ecological Applications 

1 

Ecological Applications: Article 1 

 2 

What can we learn from 100,000 freshwater forecasts? A synthesis from the NEON Ecological 3 

Forecasting Challenge 4 

 5 

Freya Olsson1,2*, Cayelan C. Carey1,2, Carl Boettiger3, Gregory Harrison2, Robert Ladwig4,5, 6 

Marcus F. Lapeyrolerie3, Abigail S. L. Lewis1, Mary E. Lofton1,2, Felipe Montealegre-Mora3, 7 

Joseph S. Rabaey6, Caleb J. Robbins7,8, Xiao Yang9, R. Quinn Thomas1,2,10 8 

 9 

1Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA 10 

2Center for Ecosystem Forecasting, Virginia Tech, Blacksburg, Virginia 24061, USA 11 

3Department of Environmental Science, Policy, and Management, University of California 12 

Berkeley, Berkeley, California 94720, USA 13 

4Department of Ecoscience, Aarhus University, Aarhus, 8000, Denmark 14 

5Center for Limnology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA 15 

6Large Lakes Observatory, University of Minnesota, Duluth, Minnesota 55812, USA 16 

7Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA 17 

8Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76706, 18 

USA 19 

9Department of Earth Sciences, Southern Methodist University, Dallas, Texas 75275, USA 20 

10Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, 21 

Virginia 24061, USA 22 

*Corresponding and contact author (freyao@vt.edu) 23 



Submitted to Ecological Applications 

2 

Open Research statement 24 

All data are published and publicly available in the Zenodo repository (Olsson et al. 2024a) and 25 

cited in this manuscript. The code used to generate figures and results in this manuscript are also 26 

archived in the Zenodo repository (Olsson et al. 2024b) and are cited within the manuscript. 27 

 28 

Key words: ecological forecasting; forecasting challenge; freshwater; near-term forecast; 29 

NEON; uncertainty; water quality  30 



Submitted to Ecological Applications 

3 

Abstract 31 

Near-term, iterative ecological forecasts can be used to help understand and proactively manage 32 

ecosystems. To date, more forecasts have been developed for aquatic ecosystems than other 33 

ecosystems worldwide, likely motivated by the pressing need to conserve these essential and 34 

threatened ecosystems. Forecasters have implemented many different modelling approaches to 35 

forecast freshwater variables, which have demonstrated promise at individual sites. However, a 36 

comprehensive analysis of the performance of varying forecast models across multiple sites is 37 

needed to understand broader controls on forecast performance. Forecasting challenges (i.e., 38 

community-scale efforts to generate forecasts while also developing shared software, training 39 

materials, and best practices) present a useful platform for bridging this gap to evaluate how a 40 

range of modelling methods perform across axes of space, time, and ecological systems. Here, 41 

we analysed forecasts from the aquatics theme of the National Ecological Observatory Network 42 

(NEON) Forecasting Challenge hosted by the Ecological Forecasting Initiative. Over 100,000 43 

probabilistic forecasts of water temperature and dissolved oxygen concentration for 1-30 days 44 

ahead across seven NEON-monitored lakes were submitted in 2023. We assessed how forecast 45 

performance varied among models with different structures, covariates, and sources of 46 

uncertainty relative to baseline null models. More models outperformed the baseline models in 47 

forecasting water temperature (ten models) than dissolved oxygen (six). These top-performing 48 

models came from a range of classes and structures. For water temperature, we found that 49 

process-based models and models that included air temperature as a covariate generally exhibited 50 

the highest forecast performance across all sites, and that the most skillful forecasts often 51 

accounted for more sources of uncertainty than the lower-performing models. The most skillful 52 

forecasts were observed at sites where observations were most divergent from historical 53 
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conditions (resulting in poor baseline model performance). Overall, the NEON Forecasting 54 

Challenge provides an exciting opportunity for a model inter-comparison to learn about the 55 

relative strengths of a diverse suite of models and advance our understanding of freshwater 56 

ecosystem predictability.   57 

 58 

1 Introduction 59 

Ecological forecasting is a growing field that leverages predictions of future ecological 60 

states to help understand and manage ecosystems (Tulloch et al., 2020; Lewis et al., 2023; Dietze 61 

et al., 2018). Here, we define forecasts as predictions of future conditions with specified 62 

uncertainty (Lewis et al. 2022). As environmental conditions increasingly change in response to 63 

altered climate and land use (IPCC, 2023), ecological forecasts have considerable potential for 64 

improving management to support ecosystem services now and in the future (Bradford et al., 65 

2018, Dietze et al., 2018). Moreover, forecasting future conditions that have yet to occur 66 

inherently requires out-of-sample implementation of models, which can lead to insights into 67 

optimal modelling approaches (Lewis et al., 2023).  68 

In freshwater ecosystems, rapid environmental change has led to conditions that are both 69 

more variable and outside of historically observed states, motivating a particular need for near-70 

term, iterative ecological forecasts (e.g., Carey, 2023, Richardson et al., 2024; Siam & Eltahir 71 

2017). Near-term (i.e., sub-daily to decadal) forecasts allow researchers to evaluate models 72 

within management-relevant timescales (Dietze et al., 2018), and iteratively updating and 73 

evaluating forecasts enables rapid improvement in forecast performance by integrating 74 

observational data and updating parameters (Dietze et al., 2018, Loescher et al., 2017). These 75 

near-term iterative ecological forecasts will help protect critical provisioning, regulating, 76 
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supporting, and cultural services (Sterner et al., 2020; Dodds et al., 2013; Lofton et al. 2023) that 77 

these highly threatened systems provide (Carrizo et al., 2017; Dudgeon, et al., 2006; Reid et al., 78 

2019), thereby improving management and mitigation (e.g. Huang et al., 2011; Carey et al., 79 

2022; Zwart et al., 2023).  80 

Although the number of near-term, iterative water quality forecasts of freshwater 81 

ecosystems is growing (Lofton et al., 2023), challenges remain in producing reliable and accurate 82 

predictions of changes in these environments. To date, researchers have implemented many 83 

classes of models to forecast freshwater variables (reviewed by Lofton et al. 2023), including 84 

process-based (PB) models (Baracchini et al, 2020; Clayer et al., 2023, Thomas et al., 2020, Page 85 

et al., 2018), machine learning (ML) models (Di Nunno 2023; Cheng et al., 2020; Read et al., 86 

2019; Zwart et al., 2023), statistical models (Woelmer et al. 2022, McClure et al. 2021; Caissie et 87 

al., 2017), and multi-model and hybrid approaches (Olsson et al., 2024c, Saber 2020; Qu et al., 88 

2017). In addition, forecasts have been generated using a range of model covariates (i.e., driver 89 

variables). In many cases, weather forecasts are used as covariates because meteorology is a key 90 

driver of many ecosystem processes in freshwater ecosystems (Hipsey et al 2019; Livingstone & 91 

Padisák, 2007, Rousso et al., 2020). Additionally, some models include autoregressive terms as 92 

covariates (e.g., ARIMA models). While forecasting methods have demonstrated promise at 93 

individual freshwater sites or a handful of sites (e.g., Barrachini et al., 2020; Thomas et al., 2020; 94 

Zwart et al., 2023; Oullex-Proulx et al., 2017, Page et al., 2018; Chen et al., 2024), to date there 95 

has yet to be a comprehensive analysis of the performance of forecasting models across a large 96 

range of model classes and model covariates across multiple sites.  97 

Forecasting challenges present a useful platform for bridging this gap and learning about 98 

how a range of modelling methods perform across axes of space, time, and ecological systems 99 
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(Thomas et al., 2023; Humphries et al., 2018). Forecasting challenges typically entail an open 100 

call to the research community with a ‘challenge’ to forecast a specific variable, standardised 101 

requirements, and formal evaluation of out-of-sample time steps. Some challenges have aimed to 102 

identify a “winner” or best approach, while others have focused more on community and 103 

knowledge building (Thomas et al., 2023; Makridakis et al., 2020; Humphries et al., 2018). By 104 

bringing together individuals and teams from broad backgrounds, challenges provide 105 

opportunities for innovation and community-building, and the development of community 106 

cyberinfrastructure can accelerate discipline-wide progress (Fer et al., 2021). Altogether, this 107 

collaborative effort can facilitate the development of new methods, standardisation of forecasting 108 

targets and formats, and tools and templates that expand the training and education to improve 109 

accessibility of forecasting (Thomas et al., 2023). While forecasting challenges are common in 110 

the fields of finance, business, demography (Makridakis et al., 2020; Bojer & Meldgaard 2021), 111 

and epidemiology (Johansson et al., 2019; Viboud et al., 2018; Biggerstaff et al., 2018), few have 112 

existed in ecology until recently (e.g., Humphries et al., 2018, Wheeler et al., 2024), providing 113 

new opportunities for advancing the discipline. For example, previous efforts to compare 114 

outcomes among ecological forecasting methods have been hindered by differences in evaluation 115 

metrics, sites, and variables being forecasted (e.g., Ruosso et al., 2020), which can be addressed 116 

by a standardised forecasting challenge framework. 117 

The National Ecological Observatory Network (NEON) Forecasting Challenge (hereafter 118 

NEON Challenge), hosted by the Ecological Forecasting Initiative (EFI) Research Coordination 119 

Network, was designed to initiate these advances in ecological forecasting. The NEON 120 

Challenge is “an open platform for the ecological and data science communities to forecast 121 

NEON data before they are collected” (Thomas et al., 2023). The challenge aims to galvanise the 122 
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forecasting community around a common framework, with the goals of: improving forecasting 123 

tools (e.g., Dietze et al., 2023), learning about ecological predictability (e.g., Wheeler et al., 124 

2024), and advancing training (e.g., Willson et al., 2023).  125 

The NEON Challenge provides a unique case study for examining the performance of 126 

freshwater forecasts across space, time, and ecological systems. Ecological time-series present 127 

specific complexities compared to previous forecasting challenges given the variability in 128 

ecological data collection, irregularities in data resolution, and the inherent variability of the 129 

observations (Farley et al., 2018; Michener & Jones, 2012). Moreover, unlike previous 130 

forecasting challenges, the NEON Challenge is on-going and accepts submissions of as-yet-131 

unmeasured conditions on a rolling basis with scoring occurring continuously as new data are 132 

collected and made available in near real-time (Thomas et al., 2023). In the aquatics lake theme 133 

of the NEON Challenge, participants were invited to submit 1 to 30 day-ahead probabilistic 134 

forecasts of daily surface mean water temperature (hereafter, Tw) and dissolved oxygen 135 

concentration (DO) of seven NEON lake sites, with new forecasts accepted daily (Thomas et al. 136 

2023). Due to issues relating to data quality, submitted forecasts of chlorophyll a were omitted 137 

from our analysis. Forecasts were solicited across a range of sites, dates, and variables to 138 

understand how skill varies across these three axes. Forecasts could be generated using any 139 

method but had to include an estimate of uncertainty.  140 

The inclusion of, and emphasis on, uncertainty was a novel component of the NEON 141 

Challenge, as uncertainty has been rarely included in previous forecasting challenges. 142 

Meaningful representations of uncertainty are critical to forecast interpretation and comparison, 143 

but uncertainty quantification is still not ubiquitous across ecological forecasts (reviewed by 144 

Lewis et al., 2022), and freshwater forecasts in particular. In a review of freshwater forecasts by 145 
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Lofton et al. (2023), only 16 out 61 near-term (sub-daily to decadal) forecasts of water quality 146 

variables included an estimate of the uncertainty associated with a prediction. Uncertainty can 147 

arise from a variety of sources: model process, model parameters, model initial conditions, 148 

model drivers, and observations (Table 1). The relative importance of each source is often 149 

dependent on the ecosystem process or state being forecasted and the forecast horizon (Thomas 150 

et al., 2020; Lofton et al., 2022; Ouellet-Proulx et al., 2017).  151 

We were specifically focused on uncertainty in our analysis because forecasts that have 152 

good accuracy and good precision (e.g., accurate uncertainty) have been shown to improve 153 

decision-making outcomes (Mylne 2009; Nadav-Greenberg et al., 2009; Ramos et al., 2013). 154 

NEON forecast submissions were thus evaluated in two ways that captured different attributes of 155 

accuracy and precision: the continuous rank probability score (CRPS) and a CRPS comparison 156 

with a baseline (null) model that acted as a benchmark to assess relative gains in forecast skill 157 

(Pappenberger et al., 2015; Murphy 1992).  158 

In this study, we analysed a year of submissions to the aquatics theme of the NEON 159 

Challenge and assessed how model performance varied among model class, model covariates, 160 

and forecast sites. We used the forecast analysis to answer the following research questions: Q1) 161 

How does model class and inclusion of covariates affect forecast performance?; Q2) To what 162 

extent is relative forecast skill affected by the inclusion of different sources of uncertainty?; and 163 

Q3: How consistent are the patterns in forecast performance across sites? We included all Tw 164 

and DO forecasts in the analysis of Q1, but focused primarily on Tw forecasts for Q2 and Q3 due 165 

to the much higher number of submissions for that variable (see below). To the best of our 166 

knowledge, our study is the first analysis that investigates the performance of freshwater 167 
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forecasts across multiple model classes, model covariates, and sites using genuine forecasts of 168 

the future.  169 

 170 

2 Methods 171 

2.1 NEON Challenge Overview 172 

The NEON Challenge has five forecasting themes that cover a range of ecological 173 

populations, communities, and ecosystems across the NEON network of monitored freshwater 174 

and terrestrial sites. Our co-author team represents a group of the Challenge organisers, 175 

cyberinfrastructure developers, and/or forecast submitters. 176 

Submissions were accepted to the aquatics theme of the NEON Challenge starting in 177 

2021 and continuing to the present (>3 years) for forecasts of water quality. Here, we focus on 178 

the forecasts of Tw and DO submitted to lake sites within the aquatics theme of the NEON 179 

Challenge during 2023, which represented the first full year with sufficient submissions for a 180 

robust inter-model comparison. 181 

 182 

2.2 Challenge design 183 

2.2.1 NEON data 184 

Water quality data were collected at seven lakes across the US (Figure 1). Tw and DO 185 

were collected using in-situ sensors. Full descriptions of the sensors and protocol are included in 186 

the data product metadata provided by NEON (DP1.20264.001, NEON TSD) for Tw and 187 

DP1.20288.001 for DO (NEON water quality). At each lake, data were only available at one 188 

location (generally at the centre, near the deepest point). For the purposes of the Challenge, 189 

unpublished data were made available to participants by NEON at a data latency of 2-3 days 190 
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after collection. The Tw and DO NEON data products extend back to 2016 but their temporal 191 

coverage varies across sites in three ways. First, there is variability in the duration of time-series 192 

data available for each site and variable (Figure S1), ranging from 3.1 to 6.6 years (up to 1 193 

January 2023, the beginning of our focal forecasting period). Second, at five lake sites, sensors 194 

are removed during winter due to ice formation. Finally, maintenance issues resulted in data gaps 195 

at some sites. Consequently, total data availability varied between 167 and 2154 days for each 196 

site/variable combination (Figure S1). 197 

 198 

2.2.2 Data processing and targets generation 199 

We, as challenge organisers, converted the Tw and DO data supplied by NEON in near-200 

real time to “targets” - observations specific to the challenge - by subsetting the sensor locations, 201 

performing additional quality control, and aggregating 30-minute sensor data to daily means. 202 

First, the data were subset to include only the surface measurements (top 1 m of the water 203 

column). Second, we filtered the data using the existing NEON flags (see metadata) and applied 204 

additional quality control measures (e.g., additional filtering for maximum and minimum 205 

allowable values for each variable; see Olsson et al. 2024a). The targets data could then be used 206 

by teams to calibrate and train models and were used for forecast evaluation. 207 

These processed target data were publicly available to all Challenge teams at a persistent 208 

URL location and were updated daily as new data became available. To further support 209 

modelling efforts by the teams, we also provided supplementary hourly water temperature profile 210 

data collected by NEON at each of the lake sites (derived from NEON DP1.20264.001, see 211 

Olsson et al., 2024a). These supplemental data were available to teams to use in model 212 

development and training but were not used in forecast evaluation.   213 
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 214 

2.2.3 Ancillary driver data 215 

NOAA’s Global Ensemble Forecasting System (GEFS; Hamill et al., 2022) weather 216 

forecast data were made available to forecast teams via functions in the custom R package 217 

neon4cast (Boettiger & Thomas, 2024). NOAA weather data for all NEON sites were 218 

downloaded each day and standardised to be used as driver data and covariates in forecast 219 

models. Teams were not required to use weather covariates but providing standardised NOAA 220 

weather forecasts ensured that the teams that used weather covariates had consistent data, and 221 

weather forecast skill was therefore not the primary driver of differences in aquatic forecast skill 222 

among model submissions. Two NOAA data products were used by forecast teams: an ensemble 223 

forecast of future weather and a historic weather product. The ensemble weather forecast 224 

consisted of 31 ensemble members up to 35 days into the future at each of the 34 sites. The 225 

historic product consisted of stacked one day-ahead forecasts from each day as an estimate of 226 

observed historical conditions that was consistent with the ensemble weather forecast data 227 

available to teams to forecast (i.e., having similar biases, compared to observational weather 228 

data) and could be used to calibrate models. Teams were also able to use any other openly-229 

available covariate data in their forecasts, although none chose to do this. 230 

 231 

2.2.4 Forecast submission guidelines 232 

Challenge teams were invited to forecast Tw and DO in all of the lakes or in any subset of 233 

sites or variables. Forecast submissions were required to have a daily time step of the focal 234 

variable(s) over a forecast horizon of at least 1 to 30 days into the future and include an estimate 235 

of uncertainty in the forecast. Uncertainty could be represented by submitting a probabilistic 236 
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forecast (Gneiting & Katzfuss, 2014), either in the form of a mean and a standard deviation for a 237 

normally distributed forecast or as an ensemble forecast for which the uncertainty was 238 

represented as a series of predictions that represent a range of future conditions (Gneiting & 239 

Katzfuss, 2014). Submissions were required to follow a standardised format (Thomas, et al., 240 

2023; Dietze et al., 2023) to enable automated evaluation and processing. New forecasts were 241 

accepted every day and evaluated as new observational data became available (see Section 2.4).  242 

During 2022 and 2023, we ran multiple workshops to introduce the Challenge to a cross-243 

section of aquatic and data scientists and managers to increase forecast submissions to this theme 244 

(Meyer et al. 2023; Olsson et al., 2023). In total, more than 300 people attended the workshops in 245 

person or online. Workshop materials were also available online for individuals or groups to use 246 

independently (Olsson et al., 2023). 247 

 248 

2.2.5 Baseline model 249 

Following forecast evaluation best practices (Harris et al., 2018; Lewis et al., 2022), we 250 

generated a baseline model that represents a limited (naive) understanding of the system for 251 

comparison to the submitted forecast models. It can be helpful to compare submitted forecasts 252 

with forecasts generated from baseline models as part of forecast evaluation to identify whether 253 

new methods provide additional, useful information beyond uninformed models (Pappenberger 254 

et al., 2015; Makridakis et al., 2020; Joliffe & Stephenson, 2012). Specifically, we generated a 255 

model that assumes the forecast for a particular day-of-year (DOY) is equal to the mean of 256 

historical data on that DOY. The DOY baseline model assumes dynamics will follow the mean 257 

conditions for that date in previously observed years (Hyndman & Athanasopoulos, 2021; 258 

Jolliffe & Stephenson, 2012). The uncertainty in this DOY forecast was generated by calculating 259 



Submitted to Ecological Applications 

13 

the standard deviation of the past observations (see Supplementary Information Text S1). The 260 

standard deviation of the daily average for the forecast period was used to represent the 261 

uncertainty for the whole horizon. The DOY forecast was assumed to follow a normal 262 

distribution, given by a mean and standard deviation for each day of year calculated separately 263 

for each site and variable.  264 

The baseline model was selected based on the observed dynamics of the variable of 265 

interest (Jolliffe & Stephenson, 2012; Pappenberger et al., 2015) as well as being a common 266 

baseline for ecological forecasts (e.g., Wheeler et al., 2024; Thomas et al., 2020; Lewis et al., 267 

2022). The DOY model is particularly useful as a baseline when the target variable’s dynamics 268 

follow a seasonal cycle (Pappenberger et al., 2015), such as variables primarily driven by 269 

meteorological forcing. A second baseline model that assumes a forecast is equal to the last 270 

observation (persistence; Joliffe & Stephenson, 2012) was also included in submissions but had a 271 

lower overall performance for both variables so was not used as a reference. 272 

 273 

2.2.6 Forecast evaluation 274 

Forecasts were evaluated against observations using the continuous rank probability score 275 

(CRPS), as implemented in the scoringRules R package (Jordan et al., 2019). CRPS evaluates the 276 

probability distribution of the forecast and assesses both the accuracy and precision of the 277 

forecast relative to observations. Specifically, we used a relative forecast skill (hereafter, 278 

CRPSskill) metric to describe how much additional information is gained in each model over a 279 

naive model. CRPSskill was calculated based on the difference in CRPS score between the 280 

submitted forecast and the DOY baseline model, following Equation 1: 281 

Equation 1. CRPSSkill = forecast_score - DOY_score 282 
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with positive values indicating a submitted forecast showing lower skill relative to the DOY 283 

model, and negative values indicating that the DOY model performed better. 284 

 285 

2.3 Analyses 286 

We assessed the performance of the forecast models across different horizons and sites 287 

by aggregating raw CRPSskill metrics at different temporal and spatial scales. To identify the best 288 

performing models per variable, we calculated the mean CRPSskill aggregated across all forecast 289 

submission dates, horizons, and sites. To ensure that the comparisons among models were based 290 

on a similar number of submissions, we only included models in the analysis that had 291 

submissions for 80% of evaluated days (i.e., days with observations). We allowed teams to 292 

‘catch-up’ their forecasts (i.e., submit forecasts which were not ‘real-time’ but ‘retroactive 293 

forecasts’ following Joliffe & Stephenson, 2012) when they missed submissions due to any 294 

issues with automated cyberinfrastructure. Retroactive forecasts could only use target data and 295 

forecasted covariates that would have been available if the forecast was generated in real-time 296 

(i.e., a retroactive forecast of water temperature for 1 July 2023 only used observations before 297 

this date for model training and was driven by NOAA weather forecasts generated on 30 June 298 

2023 or earlier). No model was represented only by retroactive forecasts. In our analysis, we 299 

removed the 16 day-ahead horizon from evaluation because of processing issues when 300 

downloading NOAA weather forecasts. The 16 day-ahead horizon had artificially low variance 301 

in the forecast that was not present in the other horizons (the 1- to 16 day-ahead forecast 302 

becomes available for download from NOAA earlier than the 17- to 35 day-ahead forecast). The 303 

processing issue was resolved during the period of evaluation but we excluded the 16 day-ahead 304 

horizon regardless so that we could compare forecasts throughout all of 2023.   305 
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The reliability of the confidence intervals (CI) was calculated by estimating the number 306 

of observations that fell within the confidence intervals specified and thus the degree to which a 307 

predicted distribution matches the true underlying distribution of the data. Reliability refers to 308 

the statistical agreement of forecast probabilities with observed relative frequencies of events 309 

(Gneiting, Balabdaoui & Raftery, 2007; Schepen et al., 2016). A forecast that has perfectly 310 

reliable confidence intervals will have the equivalent proportion of the observations falling 311 

within the CI (Joliffe & Stephenson, 2012, Thomas et al., 2020): e.g., 80% of observations 312 

falling within the 80% confidence interval and 95% of observations falling within the 95% 313 

confidence interval. Forecasts with too many observations falling within the CI are said to be 314 

‘underconfident’, while have too few in the CI is ‘overconfident’ (as Thomas et al., 2020; Zwart 315 

et al., 2020; Ouellet-Proulx et al., 2017).  316 

 317 

3 Results 318 

3.1 Forecast inventory 319 

Individuals and teams submitted a total of 100,475 daily forecasts for 1-30 day-ahead 320 

horizons using 28 different models to the aquatics lake theme of the NEON Challenge in 2023. 321 

Here, we define one forecast as a collection of predictions for 1 to 30 days in the future for a 322 

unique combination of forecast starting date, forecast site, forecasted variable, and forecasting 323 

model. The 28 models were used in addition to the two baseline models (persistence and DOY 324 

models) submitted by Challenge organisers (n = 30 models total). The forecasted variables were 325 

unevenly represented in the submissions: 14 models (plus two baselines) were used to submit 326 

forecasts for both variables (Tw, DO), 14 models were used to submit forecasts for only Tw, and 327 

no models submitted forecasts for only DO (total model submissions for each variable: Tw = 30, 328 
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DO = 16). Across all submissions, forecasts of water temperature for the lake sites were most 329 

numerous (n = 63,189; 63% of total lake forecasts) and had a greater diversity of model classes 330 

and covariates. We note that the 30 Tw models represent only the models that were used to 331 

continuously submit forecasts throughout 2023. We omitted 42 other models from one-off 332 

forecast submissions that were submitted as part of training tutorials, courses, or workshops; 333 

were uploaded for the purposes of model testing; or were submitted by unregistered participants.  334 

The 30 Tw models included a range of model classes and exogenous covariates. The self-335 

reported model classes included empirical models (statistical and time series), machine learning, 336 

and process-based models, as well as multi-model ensembles (MME; i.e., predictions were based 337 

on an aggregation of other model forecast submissions). Forecast models included a range of 338 

exogenous covariates from the NOAA GEFS weather forecasts, with forecasted air temperature 339 

being the most commonly used covariate (n = 19, Table S1). No other exogenous covariates (i.e., 340 

non-NOAA GEFS weather covariates) were included in any model. Details of all of the models 341 

that submitted forecasts in 2023 that met the criteria for inclusion in this analysis are provided in 342 

Supplementary Information Text S1. 343 

The 16 DO models represented less diversity in model classes and covariates than the Tw 344 

models (Figure 2). The model classes for the DO models included only empirical and ML 345 

models (in addition to the baseline models), and air temperature was used as a covariate in six of 346 

the 16 DO models (38%).  347 

 348 

3.2 How does model class affect forecast performance across all variables? 349 

More Tw forecast models (n = 10) outperformed the baseline than the DO forecast 350 

models (n = 6; Figure 2). Only six of the submitted DO models outperformed the DOY baseline 351 
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model across all forecast dates and sites (i.e., models had mean positive CRPSskill, with a mean 352 

relative skill between 0.01 and 0.08 mg/L aggregated across the 1-30 day-ahead horizon (Figure 353 

2c). These six highest performing DO models included both ML and empirical models, of which 354 

the highest performing models were ML models that used air temperature as a covariate 355 

(Random Forest, Lasso, and XGBoost). The models that did not out-perform the baseline were 356 

all empirical, and no PB models were used to forecast DO in lakes.  357 

Unlike DO, the best performing models for water temperature (Tw) were from the full 358 

range of model classes (Figure 2a,b). Of the 30 submitted models, ten Tw forecast models 359 

outperformed the DOY baseline model when forecasts were aggregated across all sites and 360 

horizons for the year of forecasts. Across all sites and forecasts, a PB model had the highest skill 361 

(Figure 2a), with a mean CRPSskill of 0.22 °C aggregated across the 1-30 day-ahead horizon.  362 

Although the overall top three models were PB models, not all PB models were high performing, 363 

as four PB models had a negative mean CRPSskill (Figure 2b).  364 

 Altogether, of the different model classes used to submit forecasts of Tw, four of the 365 

eight PB models, one of the 13 empirical models, two of the four MME, and all three of the ML 366 

models outperformed the baseline DOY model on average over the year (Figure 2a). Machine 367 

learning models accounted for three models in the top 10 Tw forecast models, as XGBoost, 368 

Random Forest, and Lasso models all had positive CRPSskill. Empirical models exhibited the 369 

worst performance among the model classes, as only one (the Prophet model, Figure 2a) 370 

outperformed the DOY baseline model across all forecasts. Given the higher performance of 371 

forecasts for Tw (ten models beating the baseline), as well as the higher diversity of model 372 

classes represented in these higher performing models (n = 4), further analyses for addressing 373 

Q1, Q2, and Q3 were conducted on the Tw forecasts only.  374 
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3.3 Among Tw models, how does model class and inclusion of covariates affect performance 375 

across the forecast horizon? 376 

Nine out of the 10 Tw models that outperformed the baseline model included air 377 

temperature as a covariate (Figure 2a). The specific inclusion of air temperature as a covariate 378 

appeared to confer some skill, as it was not included in any of the five lowest performing models 379 

(Figure 2b). However, the inclusion of exogenous covariates did not guarantee high performance 380 

of a model, as ten of the models exhibiting negative CRPSskill included air temperature as a 381 

covariate, as well as other NOAA weather covariates such as humidity and precipitation 382 

(Supplementary Text S1). There was only one model that outperformed the baseline model, the 383 

empirical Prophet model, which was based solely on observations and included no exogenous 384 

covariates (Figure 2a).  385 

Focusing on Tw, CRPSskill in the most skillful forecasts generally degraded across the 386 

forecast horizon (Figure 3a), and, on average, were unable to outperform the DOY baseline at 387 

horizons of 15 to 25 days-ahead. The exceptions to this pattern were the Lasso and Random 388 

Forest ML models, which showed increases in skill for the first 7-8 days-ahead and then 389 

decreases in skill at longer horizons. Generally, the PB models and MME forecasts showed 390 

larger rates of degradation compared to the ML and empirical models (Figure 3a). The Prophet 391 

ML model exhibited the lowest degradation in skill (0.16 °C to -0.08 °C) across the 30 days, 392 

although its skill at 7-16 day-ahead horizons was the lowest of any model that out-performed the 393 

baseline (Figure 3a). In comparison, two MME forecasts showed the highest rates of degradation 394 

(LER baselines MME and FLARE-LER MME), from high performance at short horizons (0.58 395 

°C and 0.64 °C) to negative relative skill at the longest horizons (-0.24 °C and -0.32 °C). Only 396 

one model had positive CRPSskill across the full forecast horizon, the XGBoost ML model, which 397 
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had a low rate of skill degradation across the 30 days (0.32 °C, Figure 3a). The models which 398 

exhibited negative skill throughout the 30-day forecast horizon generally showed consistently 399 

decreasing performance into the future (Figure S2), although the worst performing models had 400 

low performance irrespective of forecast horizon. 401 

Out of all Tw models that outperformed the DOY baseline (as determined by the 402 

aggregation of skill over the full forecast horizon; Figure 2a), XGBoost had positive relative skill 403 

for the full forecast horizon with the FLARE-GLM PB model, and the Random Forest ML model 404 

had the next longest durations of positive relative skill (i.e., 19 and 27 days, respectively, over 405 

the 30-day forecast horizon), but differed in the timing of these days. The Random Forest model 406 

had negative CRPSskill at the start of the forecast horizon and FLARE-GLM had negative relative 407 

skill at the end of the forecast period (Figure 3a), although both were only marginally worse-408 

performing than the baseline on the days when their CRPSskill was negative. FLARE-GLM was 409 

the most skillful model for the first 16 days of the forecast horizon, dropping only to the 4th 410 

highest performer overall at other horizons. In contrast, the best performing model at 30 days 411 

ahead, the Random Forest model, was the second worst-performing model at 1-4 days-ahead.  412 

 413 

3.4 To what extent is relative forecast skill affected by the inclusion of different sources of 414 

uncertainty? 415 

Although submissions were required to include an estimate of forecast uncertainty 416 

(Thomas et al., 2023), the sources of uncertainty varied among the models. The most commonly 417 

represented source of uncertainty in Tw models was driver uncertainty (n = 22, Table S1), with 418 

13 models including only one source of uncertainty, seven models including two sources, one 419 

model including three sources, and eight models including all five sources of uncertainty 420 
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(defined in Table 1).  421 

Of the 10 Tw models that had mean positive skill aggregated over the forecast horizon 422 

for Tw (Figure 2a), seven included at least three sources of uncertainty and six included five 423 

sources (Table 2). All but one model (n = 9) included driver uncertainty (in the form of the 424 

NOAA GEFS weather ensembles as covariates), with parameter and process uncertainty the next 425 

most common uncertainty source included with these top models (n = 8 models represented this 426 

source of uncertainty). In comparison, Tw models that performed less well than the baseline 427 

rarely included sources of uncertainty other than driver data uncertainty (Table S1). 428 

The degradation in relative skill for the majority of Tw models at longer horizons was 429 

concurrent with an increase in bias (i.e., lower accuracy; Figure 3c) and standard deviation (i.e., 430 

lower precision; Figure 3b). The increased relative skill exhibited by two ML models (Lasso and 431 

Random Forest) across the first seven days of the forecast horizon (Figure 3a) was concurrent 432 

with reductions in absolute bias (Figure 3c). Across the first 10 days, the PB models (FLARE-433 

GLM, FLARE-GOTM) and MMEs that included the PB models (FLARE-LER MME and LER 434 

baselines MME) exhibited the lowest absolute bias, which increased steadily across the horizon 435 

up to ~20 days ahead. In comparison, the forecast accuracy and to a certain extent, precision, in 436 

the Prophet, XGBoost, and Random Forest ML models degraded less, resulting in lower bias and 437 

SD at longer horizons (Figure 3c). 438 

Increased standard deviation (i.e., greater uncertainty) across the forecast horizon may 439 

indicate a reduction in precision in the forecasts, which can degrade CRPSskill and reliability of 440 

the forecast confidence intervals (CI). The top performing Tw models were primarily 441 

underconfident (Figure 4a) for the 80% confidence intervals, meaning that >80% of observations 442 

fell within the 80% confidence intervals. Generally, the confidence of the forecasts changed little 443 
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over the horizon, especially beyond the first five days (Figure 4a). Beyond this horizon, only the 444 

Random Forest and Lasso ML models showed shifts in confidence beyond 5 days, becoming less 445 

overconfident and eventually becoming underconfident at horizons greater than 8 days (Figure 446 

4). The XGBoost ML model yielded the most reliable forecasts, with 80.4% of observations in 447 

the 80% CI when averaged across horizons (Figure 4). The Prophet model was the only model 448 

that out-performed the baseline that was overconfident for the whole forecast horizon, with its 449 

uncertainty changing little across the forecast horizon (74-79% of observations in the 80% CI; 450 

Figure 4a). The two MME models showed the highest rates of underconfidence, with 91.5% and 451 

96.2% points falling on average into the 80% CI (Figure 4). Among the poorer performing Tw 452 

models, there was a greater rate of overconfidence, especially at horizons less than 7 days ahead, 453 

with 9 out of the 18 models overconfident. The rate of overconfidence increased among all 454 

models at the 95% CI (Figure 4b,d), demonstrating poor calibration for models when forecasting 455 

observations at the tails of the distribution. 456 

 457 

3.5 Are the patterns in performance consistent across sites?  458 

Within model classes, Tw forecast CRPSskill showed similar patterns among sites, with 459 

the exception of empirical models (Figure 5a). Generally, ML, PB models, and MMEs had 460 

positive CRPSskill at PRLA, PRPO, and TOOK, though the latter had a limited number of 461 

forecasts given its much shorter buoy deployment duration (Figure S1). In comparison, ML 462 

models, PB models, and MMEs generally exhibited negative CRPSskill at SUGG, BARC, and 463 

CRAM (Figure 5a).  464 

Mean CRPSskill (from the Tw models that outperformed the baseline, as shown in Figure 465 

2a) degraded across the forecast horizon for all sites, but remained positive at PRPO and PRLA 466 
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for the full 30-day horizon and at TOOK for the first 18 days (Figure 5b). In contrast, at CRAM, 467 

LIRO, BARC, and SUGG, CRPSskill was positive between 1 and 12 days-ahead. This high 468 

CRPSskill at PRPO, PRLA, and TOOK is likely due to the relative gains against more poorly-469 

performing DOY baseline forecasts at these sites (Figure S3). Focusing on the four months when 470 

all lakes had data availability (i.e., when all lakes had buoys deployed) vs. longer time periods 471 

did not substantially alter the differences in CRPSskill observed among lakes (Figure S4).  472 

Climate variability may have influenced why some models performed better than others 473 

in forecasting out-of-sample conditions. Observations for water temperatures in 2023 show that 474 

PRPO and PRLA were warmer than historical conditions represented in the DOY model, 475 

especially in May and June (Figure 6). In comparison, CRAM and LIRO, for which models 476 

performed worse than the baseline on average, exhibited water temperatures generally within 477 

around 2 °C of historical conditions (Figure 6). BARC and SUGG exhibited a smaller range of 478 

water temperatures that fell within 2 °C of historical conditions for all months except March 479 

(Figure 6). 480 

 481 

4 Discussion 482 

Among the 29 models that forecasted water quality variables across seven lakes, 10 483 

models out-performed the baseline model for Tw, and six for DO (Figure 2). Of the 10 best-484 

performing Tw models, there were four PB models that included multiple exogenous weather 485 

covariates, three ML models, two multi-model ensembles, and one empirical model, 486 

demonstrating that multiple different model classes can yield skillful forecasts for lake water 487 

temperature. Our uncertainty analysis showed that poor-performing Tw models were generally 488 

more overconfident, likely due to insufficient representation of uncertainty in the forecasts. 489 
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Finally, model skill was inconsistent across sites for the best-performing lake temperature 490 

forecast models, which may be related to climate variability. Below, we discuss how our findings 491 

addressed our research questions, with a focus on the Tw models.  492 

 493 

4.1 How do model class and model covariates affect forecast performance? 494 

No individual model submitted to the challenge was the best performing model for both 495 

variables, although four models outperformed the baselines for both Tw and DO. These four 496 

models – the ML models XGBoost, Random Forest, and Lasso and the empirical model Prophet 497 

– show that a range of model types were useful for a range of variable forecasts. High 498 

performing models for DO were in both empirical and ML categories, although no PB or MME 499 

models were submitted for DO, necessitating further investigation of both model types to 500 

potentially improve forecast performance (Olsson et al., 2024c; Hagedorn et al., 2005). In 501 

contrast, models outperforming the baseline for Tw came from four model classes (ML, PB, 502 

empirical, and MMEs).  503 

In an analysis of Tw models specifically (because of the higher diversity of model classes 504 

that were submitted for this variable), we found that PB models that included air temperature as a 505 

covariate performed best across all sites (Figure 2a). Air temperature is likely a key covariate for 506 

high-performing surface water temperature forecasts because Tw dynamics are primarily driven 507 

by processes at the air-water interface of lakes (Schmid & Read, 2021; Piccolroaz et al., 2024), 508 

with air temperature a causal forcing variable (Livingstone & Padisák, 1989). PB models that 509 

used additional meteorological parameters (e.g., incoming short-wave radiation, relative 510 

humidity, wind speed) to calculate heat fluxes to mechanistically derive water temperatures 511 

resulted in even higher performing forecasts (Figure 2). One exception was a simple-physics PB 512 
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model that had insufficient uncertainty representation and thus was not able to out-perform the 513 

baseline model (Supplementary Text S1). Altogether, our results strongly support that including 514 

the dominant drivers of water temperature (namely, air temperature) not surprisingly improved 515 

the performance of lake water temperature forecasts.  516 

In contrast to the Tw PB models, the domain-agnostic models (i.e., models that do not 517 

include any mechanistic information about lake functioning; ML and empirical models) showed 518 

less degradation across the forecast horizon, which may be potentially due to the non-dynamic 519 

nature of the methods (Supplementary Table S1). In comparison, the PB models were more 520 

skillful at short horizons, suggesting that forecasters might choose different Tw models based on 521 

the horizon needed. XGBoost, Lasso, and Random Forest ML models and the empirical Prophet 522 

model were less skillful than the PB models and PB-MMEs in the first 10 days, but become more 523 

skillful than the PB models at longer horizons due to their low rates of degradation. XGBoost 524 

was the only model to have a positive skill across the full forecast horizon (on average for all 525 

forecasts and sites), highlighting a robust method for forecasting Tw at any site in our study. Our 526 

results are similar to other ecological forecasting studies: for example, domain-agnostic models 527 

outperformed PB models in a penguin population forecasting competition in which annual 528 

populations were forecasted up to 3 years ahead (Humphries et al., 2019). Similarly, simple time-529 

series models have shown promise in other ecological population forecasts (Ward et al., 2014). 530 

In the NEON Challenge, the same ML and empirical models that performed well for Tw also 531 

performed well for DO forecasts, on average out-performing the DOY baseline, and thereby 532 

representing robust methods across multiple variables.  533 

Reduction in skill of Tw forecasts over the forecast horizon may be linked to a reduction 534 

in skill of the air temperature forecasts being used as model driver data. The Prophet model, 535 
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which was the only model that out-performed the baseline that did not include air temperature as 536 

a covariate (or any covariates at all), showed less degradation in forecast performance than the 537 

overall better performing PB models, although this represents only a single model. The PB 538 

models, generally, benefit from high weather forecast skill at shorter horizons (Petchey et al., 539 

2015, Zhou et al., 2021), but degrade in performance along with the performance of their 540 

covariates. Beyond 10 days-ahead, when the weather forecasts are less skillful (Zhou et al., 541 

2021), the PB models performance suffered, suggesting that forecasters seeking to optimise 542 

performance at longer horizons should focus on models that are less dependent upon 543 

meteorological driver data (e.g., time series models). 544 

The differences in the forecast horizons at which each Tw model was most skillful may 545 

present opportunities for generating MMEs or hybrid models (e.g., combining domain-agnostic 546 

models with PB models) to exploit the strengths of multiple model types across the forecast 547 

horizon. Hybrid model approaches have shown high performance in other forecasting challenges 548 

and competitions (Makridakis et al., 2020; Clark et al., 2022) and MMEs are most successful 549 

when the individual model structures are more diverse (Olsson et al., 2024c; Petropoulos et al., 550 

2022; Dormann et al., 2018). The performance of the MMEs in this NEON Challenge synthesis 551 

was not consistent with previous studies and other forecasting challenges, in which MMEs 552 

showed the best performance (Makridakis et al., 2020; Clark et al., 2022). For example, in 553 

forecasts of tick disease incidence, the simple model average of four individual models was 554 

better than any individual model (Clark et al., 2022), and the winner of the M4 forecasting 555 

competition (a wide-ranging timeseries forecasting challenge) as a combination of statistical and 556 

empirical models (Makridakis et al., 2020). Similarly, in a recent single-site lake study, forecasts 557 

generated by an MME composed of three PB and two baseline models outperformed the 558 
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individual models across two years (Olsson et al., 2024c). Conversely, in this analysis, the same 559 

MME had lower relative skill, higher bias, and higher uncertainty than some of the individual 560 

models from which it was derived (Figure 2). This discrepancy in MME performance could be 561 

caused by poor calibration in the individual models at some of the lake sites. The individual 562 

models included in this study were almost all underconfident (Figure 4), which resulted in very 563 

large uncertainty in the MMEs and likely contributed to their poor performance, as MME 564 

forecasts have been shown to be most successful when the individual constituent models are 565 

slightly overconfident (Wang et al., 2022; Hagedorn et al., 2005). Methods such as trimming, 566 

where distributions are narrowed, could help constrain MME uncertainty, increasing the overall 567 

skill of these forecasts (Howerton et al., 2023).   568 

 569 

4.2 To what extent is relative forecast skill affected by the inclusion of different sources of 570 

uncertainty? 571 

Our synthesis suggests that representation of forecast uncertainty is important for 572 

determining the overall forecast performance of probabilistic Tw forecasts. The top performing 573 

Tw models often included multiple sources of uncertainty (up to n = 5, Table 2), unlike the lower 574 

performing models, which frequently only included driver uncertainty. Consequently, many 575 

poor-performing models were overconfident in their predictions, suggesting there was 576 

insufficient uncertainty included in those forecasts, especially at shorter horizons (Figure 4). 577 

These results suggest that driver uncertainty alone is not a sufficient representation of the total 578 

uncertainty, especially given that weather forecasts are themselves often overconfident at these 579 

horizons (Zhou et al., 2022). When these weather forecasts are used as driver data for overfitted 580 

lake models (Zwart et al., 2023), overconfidence in water quality forecasts is even more likely to 581 
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occur. Overconfidence of forecasts was also reported in a forest phenology forecast synthesis, in 582 

which forecasts that included covariates were overconfident at shorter horizons (Wheeler et al., 583 

2024). In our analysis, the Lasso and Random Forest ML models, which only included driver 584 

uncertainty, showed performance improvements at longer horizons as the uncertainty from the 585 

weather forecasts increased and the water temperature forecasts became less overconfident 586 

(Figure 4). Furthermore, the ML XGBoost model, which included process uncertainty in addition 587 

to driver uncertainty, outperformed the other ML models at shorter horizons.   588 

Improving the representation of uncertainty in forecasts, as quantified by the reliability of 589 

forecast confidence intervals, is important for management (Ramos et al., 2013; Crochemore et 590 

al., 2021). Use of ecological forecasts by decision makers is likely to improve if forecast 591 

uncertainty is well quantified and confidence intervals are appropriate (Ramos et al., 2013; 592 

Buizza 2008; Nadav-Greensberg & Joslyn, 2009). Underconfidence and overconfidence limit the 593 

use of forecasts for management, as underconfident forecasts provide too wide of a range of 594 

potential future conditions and overconfident forecasts underestimate the possible range of 595 

conditions, with both leading to inappropriate management actions (Crochemore et al., 2021). 596 

Consequently, our results suggest that including more than one source of uncertainty may help 597 

increase the usability of forecasts as decision support tools. 598 

 599 

4.3 Is model forecast performance consistent across sites? 600 

Tw forecast performance varied among sites, with the relative gain in skill likely due to 601 

the lower performance of baseline models at some lakes, especially at PRPO and PRLA, two 602 

lakes in North Dakota. The DOY baseline model had the lowest performance at PRPO and 603 

PRLA, potentially because 2023 conditions in these two lakes were substantially different from 604 
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historical observations, resulting in a lower performing baseline forecast (Figures 6, S3). This is 605 

consistent with a previous single-model forecasting study (FLARE-GLM) that also showed 606 

improved performance above a DOY baseline for these two sites, especially at shorter horizons 607 

(Thomas et al., 2023). Differences from historical conditions that exceeded 3 °C resulted in poor 608 

DOY baseline performance in that study. Our results suggest that if there is a divergence of 609 

water temperature of this magnitude, using a PB or ML model provides a much stronger 610 

forecasting approach than a baseline model. All model classes except the empirical model class 611 

showed positive skill compared to the DOY baseline at PRLA and PRPO as well as at TOOK, to 612 

a lesser extent. As environmental conditions further exceed historical means due to global 613 

change, models that only consider patterns from long-term historical observations may be less 614 

valuable than models that are able to infer ecological processes or use recently-observed data in 615 

generating forecasts.  616 

 617 

4.4 Value and refinements for forecasting challenges 618 

Forecasting challenges provide a compelling opportunity to learn about ecological 619 

predictability over gradients of time, space, ecological level of organization, and forecasting 620 

methods. The submissions from 30 models (including two baselines) to the aquatics lake theme 621 

of the NEON Challenge covered a range of model classes and approaches. However, since the 622 

NEON Challenge was open to the community and we did not specifically guide the types of 623 

submissions, the breadth of models was not exhaustive and therefore some questions remain. 624 

Specifically, quantifying the value of different covariates to different models (e.g., XGBoost, 625 

linear models, Random Forest) would be best done by comparing forecasts with the same 626 

modelling approach but with differing covariates and quantitatively seeing how forecast skill 627 
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changes with their addition or removal. It is possible that this ‘model selection’ was done by 628 

teams before forecasts were submitted and that the final model submitted to the Challenge was 629 

the optimal structure, but we cannot know from the submitted metadata whether these models 630 

represent each team’s “best” attempt at producing a forecast.  631 

We also saw uneven representation in the variables being forecasted, with more 632 

submitted forecasts of Tw than DO. We identified several potential factors that contributed to 633 

this uneven representation. First, NEON Challenge training materials were focused on lake 634 

temperature forecasting, which may have skewed submissions to this variable because 635 

participants in workshops may have been more likely to modify pre-existing code for submitting 636 

a new model type to Tw, rather than develop new code for DO submissions. Second, water 637 

temperature may have been an easier, more “introductory” forecast target variable as there are 638 

well-established mechanistic processes linked to driver datasets (e.g., meteorology) that were 639 

made readily available for teams to use. Conversely, the drivers of DO concentrations are much 640 

more complex, drawing from physical, chemical, and biological processes (Langman et al., 2010, 641 

Carey, 2023; Hanson et al., 2006). Additional driver data needed to model lake DO processes, 642 

such as nutrients and inflows, were not as easily accessible as the historical and forecasted 643 

meteorological drivers from the Challenge organisers. Overall, the best performing models for 644 

lake water temperature are unlikely to be optimal for a wide range of other variables and 645 

ecosystems, motivating future work and the need for more submissions to the NEON Challenge 646 

to understand how their forecast model performance varies across lake variables. 647 

The NEON Challenge aims to both provide training for the larger ecological community 648 

and enable quantifying the fundamental predictability of ecological variables. While the 649 

submitted forecasts have limitations relative to a standardised modelling exercise (e.g., a 650 
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formalised multi-model intercomparison project), the Challenge trained >300 individuals and 651 

teams, resulted in the development of novel ecological models, and introduced forecasting to a 652 

broad community of researchers. The NEON Challenge recruited participants as a fun, training-653 

focused, educational, and accessible opportunity to learn forecasting in a low-stakes 654 

environment, with flexible deadlines and registration. Therefore, despite the potential drawbacks 655 

of an open forecasting challenge (vs. a standardized multi-model comparison), it is worth noting 656 

that even the forecasts that were omitted from the final analysis still represent participants who 657 

may have never generated even a single ecological forecast without the inclusive atmosphere of 658 

the NEON Challenge and its training materials.  659 

The NEON Challenge also sets the stage for future forecasting model analyses. For 660 

example, future work could address whether the inclusion of exogenous covariates in models 661 

produces forecasts that are overconfident at shorter horizons for other ecological variables, 662 

which could be corrected using multiple sources of uncertainty. Similarly, it would be useful to 663 

investigate whether the domain-agnostic models that outperformed the baseline for DO and Tw 664 

perform similarly well when forecasting other ecological variables. The spatial and temporal 665 

extent of NEON data, as well as the range of ecological variables on which data are collected, 666 

provides a suite of opportunities to continue to investigate these questions and as a platform to 667 

grow the field of ecological forecasting.  668 

 669 

5 Conclusion 670 

Our synthesis of >100,000 submissions to the NEON Forecasting Challenge 671 

demonstrates that a number of model classes were able to out-perform a DOY baseline model to 672 

forecast water temperature and dissolved oxygen across seven lake sites, providing insight into 673 
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optimal forecasting approaches for different contexts. Water temperature models that included 674 

air temperature as an exogenous covariate and those that included multiple sources of uncertainty 675 

generally performed well and came from process-based, empirical, machine learning, and multi-676 

model ensemble model classes. The relative skill of these models was shown to be highest at 677 

sites that exhibited conditions outside of historical observations. These forecasting methods are 678 

likely to become increasingly valuable for guiding decision-making in a world in which 679 

ecosystems are become more variable and continue to move outside of historically observed 680 

conditions. Overall, our results highlight the value of forecasting challenges to advance the 681 

development of ecological forecasts for both theory and management. 682 
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Table 1. Definitions of forecast uncertainty sources included in the submitted models, modified 969 

from Dietze (2017), Thomas et al. (2020), and Lofton et al. (2023).  970 

Source of 

uncertainty 

Definition Example of how the uncertainty 

source could be quantified 

Process Uncertainty from the inability of the 

model to replicate the dynamics of 

the forecasted state. 

Calculating the error from the residuals 

of the model fit to historical data. 

Parameter Uncertainty in the parameter values 

of a fitted model. 

Sampling from a distribution of 

parameter values and assigning different 

parameter values to each ensemble 

member. 

Initial condition Uncertainty in estimates of current 

conditions at the time of forecast 

generation (e.g., as a result of 

observation uncertainty, missing 

observations, and data assimilation). 

Quantifying the spread in updated states 

following data assimilation or the 

previous day’s forecast. 

Driver Uncertainty from driver data (e.g. 

future air temperature). 

Using an ensemble of weather forecasts 

as drivers to the model. 

Observation Uncertainty from measurement error 

in the state being forecasted 

(difference between actual state and 

measured state). 

Calculating the standard deviation of 

replicate water temperature 

observations. 

  971 
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Table 2. Representation of uncertainty within the best-performing water temperature (Tw) 972 

models (sorted in descending order) that had positive mean CRPSskill over the 1-30 day-ahead 973 

forecast horizon. See Table 1 for definitions of uncertainty types. For the comprehensive list of 974 

uncertainty sources for all submitted models and all variables, see Table S1. 975 

Model 

Source of uncertainty represented 

Driver Parameter Process 
Initial 

conditions 
Observation 

FLARE-GLM x x x x x 

FLARE-GLM-noDA x x x x x 

FLARE-GOTM x x x x x 

XGBoost x  x   

Random Forest x     

LER-Baselines MME x x x x x 

FLARE-LER MME x x x x x 

FLARE-GOTM-noDA x x x x x 

Prophet  x x   

Lasso x     

 976 

  977 
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Figure Captions 978 

Figure 1. Map of National Ecological Observatory Network (NEON) lake sites located across 979 

the contiguous U.S., with map inset showing Alaska. Co-occurring sites are shown by the black 980 

centroid and the coloured points are offset from this location. The points are labelled with their 981 

four-character NEON site code: BARC (Barco Lake), CRAM (Crampton Lake), LIRO (Little 982 

Rock Lake), PRLA (Prairie Lake), PRPO (Prairie Pothole Lake), SUGG (Suggs Lake), and 983 

TOOK (Toolik Lake).   984 

Figure 2. Mean relative skill (CRPSskill, compared to day-of-year (DOY) baseline model) of 985 

water temperature (Tw) and dissolved oxygen (DO) forecasts for the submitted models (averaged 986 

across sites, submission dates, and 1-30 day-ahead horizons). Positive values indicate that a 987 

submitted model performed better, on average, than the DOY baseline and negative values 988 

indicate that the baseline performed better. Panel (a) shows the Tw models that outperformed the 989 

DOY baseline as defined by CRPSskill and panel (b) shows all Tw models. Panel (c) shows 990 

CRPSskill  for DO models. The shading of the bars indicates the model structure; colour = model 991 

class (empirical, machine learning (ML), multi-model ensemble (MME), process), and pattern = 992 

inclusion of air temperature as a covariate. A second baseline model (Persistence), is shown in 993 

grey (panels b,c) and models that outperformed the DOY baseline are highlighted by the grey 994 

background shading.  995 

Figure 3. Relative skill (a), mean standard deviation (b), and mean absolute bias (c) across the 996 

30 day-ahead forecast horizon for the models that outperformed the day-of-year baseline for 997 

water temperature. Relative skill was calculated as the difference in CRPS between the focal 998 

model and the day-of-year baseline. The metrics in each panel were averaged across all sites and 999 
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forecast submission dates. Models are listed in the legend in descending order of mean skill 1000 

aggregated over the forecasting period.   1001 

Figure 4. Reliability plot (% of observations falling within the 95% and 80% confidence 1002 

interval) for the water temperature models that out-performed the day-of-year baseline (a and b) 1003 

and those that did not (grey lines, c and d). Perfectly confident forecasts would have an equal 1004 

percentage of observations within the confidence interval as the percentage covered by the 1005 

confidence interval. Values above the dashed line indicate that the forecast is underconfident 1006 

(forecast precision is too wide) and values below the line indicate that the forecast is 1007 

overconfident (forecast precision is too narrow). Values above the dotted threshold indicate that 1008 

the forecast is underconfident (i.e., there are too many observations falling within the specified 1009 

confidence interval) and values below the line indicate that the forecast is overconfident. Note 1010 

the differences in scale between the panels a/b and c/d that show the 80% and 95% confidence 1011 

intervals, respectively. 1012 

Figure 5. (a) Relative skill of water temperature forecasts compared to the baseline (day-of-year) 1013 

for each site compared among model classes: empirical, machine learning (ML), multi-model 1014 

ensemble (MME), and process-based. Positive values indicate the submitted model performed 1015 

better, on average, than the baseline and negative values indicate that the baseline performed 1016 

better. The n value indicates the number of models represented in each model class. (b) Mean 1017 

relative skill for the top ten performing models among sites across the forecast horizon.  1018 

Figure 6.  Difference in median monthly surface water temperature (depths < 1 m) between 2023 1019 

and historical observations (2015-2022) at the seven lake sites. Shaded regions show delta values 1020 

that exceed 1 oC from median historical conditions. Not all lakes have historical observations for 1021 

the full eight-year historical period or observations during all months.   1022 
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Figure S1. Time series of the water temperature and dissolved oxygen targets data available for each lake 

site and variable within the NEON Forecasting Challenge. Each panel shows data from a site denoted by 

the four-character NEON site code.   
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Figure S2. Mean relative skill of temperature (Tw) models that did not out-perform the day-of-year 

baseline (on average for all forecasts and sites) across the 30 day-ahead forecast horizon. Negative 

relative skill indicates that the baseline performed better and positive relative skill indicates the submitted 

model performed better. 
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Figure S3. Median water temperature forecast performance (CRPS, °C) of the two baseline models (day-

of-year/climatology, and persistence/persistenceRW) across the forecast horizon (A, B), and over time 

(median performance for each forecast date for all 1-30 days-ahead (C, D) at the seven lake sites. 
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Figure S4. a) Relative skill of water temperature forecasts compared to the baseline (day-of-year) for 

each site compared among model classes (empirical, machine-learning (ML), multi-model ensembles 

(MME), and process). Positive values indicate the submitted model performed better, on average, than the 

baseline and negative values indicate that the baseline performed better. The n value indicates the number 

of models represented in each model class. b) Average relative skill for the top ten performing models 

among sites across the forecast horizon. Duration of forecasts was consistent among sites.
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Table S1. A summary of model structure (type, covariates), sources of uncertainty, and use of historical data to produce initial conditions and 

update parameters for 30 forecast models submitted to the aquatics theme of the NEON Forecasting Challenge. A full description of the models 

can be found in Supplementary Text 1. Definitions for uncertainty types can be found in Table 2 in the main manuscript. *MME = multi-model 

ensemble. 

Model Name 
Model 

Type 

Forecast 

Variables 
Model Covariates 

Includes 

Initial 

Conditions? 

Is Model 

Dynamic? 

Sources Of 

Uncertainty 

Represented 

Updates 

Parameters? 

Air2Water Empirical 
Temperature, 

Oxygen 
Air Temperature No No Driver Yes 

Baseline MME MME Temperature - Yes Yes Process No 

Prophet Empirical 
Temperature, 

Oxygen 
- No Yes 

Parameter, 

Process 
Yes 

Day-Of-Year Null 
Temperature, 

Oxygen 
- No No  No 

fARIMA Empirical Temperature Air Temperature Yes Yes 
Process, 

Driver 
Yes 

fARIMA-DOY 

MME* 
MME Temperature Air Temperature Yes Yes Process Yes 

LER MME* MME Temperature 

Air Temperature, Air 

Pressure, Relative 

Humidity, Surface 

Downwelling 

Longwave, Surface 

Downwelling 

Shortwave, 

Precipitation, Eastward 

Wind, Northward Wind 

Yes Yes 

Parameter, 

Process, 

Initial 

Conditions, 

Driver, 

Observation 

Yes 

LER-Baselines 

MME* 
MME Temperature 

Air Temperature, Air 

Pressure, Relative 

Humidity, Surface 

Downwelling 

Longwave, Surface 

Downwelling 

Shortwave, 

Precipitation, Eastward 

Wind, Northward Wind 

Yes Yes 

Parameter, 

Process, 

Initial 

Conditions, 

Driver, 

Observation 

Yes 
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FLARE-GLM Process Temperature 

Air Temperature, Air 

Pressure, Relative 

Humidity, Surface 

Downwelling 

Longwave, Surface 

Downwelling 

Shortwave, 

Precipitation, Eastward 

Wind, Northward Wind 

Yes Yes 

Parameter, 

Process, 

Initial 

Conditions, 

Driver, 

Observation 

Yes 

FLARE-GLM- noDA Process Temperature 

Air Temperature, Air 

Pressure, Relative 

Humidity, Surface 

Downwelling 

Longwave, Surface 

Downwelling 

Shortwave, 

Precipitation, Eastward 

Wind, Northward Wind 

No No 

Parameter, 

Process, 

Initial 

Conditions, 

Driver, 

Observation 

No 

FLARE-GOTM Process Temperature 

Air Temperature, Air 

Pressure, Relative 

Humidity, Surface 

Downwelling 

Longwave, Surface 

Downwelling 

Shortwave, 

Precipitation, Eastward 

Wind, Northward Wind 

Yes Yes 

Parameter, 

Process, 

Initial 

Conditions, 

Driver, 

Observation 

Yes 

FLARE-GOTM- 

noDA 
Process Temperature 

Air Temperature, Air 

Pressure, Relative 

Humidity, Surface 

Downwelling 

Longwave, Surface 

Downwelling 

Shortwave, 

Precipitation, Eastward 

Wind, Northward Wind 

No No 

Parameter, 

Process, 

Initial 

Conditions, 

Driver, 

Observation 

No 
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FLARE-Simstrat Process Temperature 

Air Temperature, Air 

Pressure, Relative 

Humidity, Surface 

Downwelling 

Longwave, Surface 

Downwelling 

Shortwave, 

Precipitation, Eastward 

Wind, Northward Wind 

Yes Yes 

Parameter, 

Process, 

Initial 

Conditions, 

Driver, 

Observation 

Yes 

FLARE-Simstrat- 

noDA 
Process Temperature 

Air Temperature, Air 

Pressure, Relative 

Humidity, Surface 

Downwelling 

Longwave, Surface 

Downwelling 

Shortwave, 

Precipitation, Eastward 

Wind, Northward Wind 

No No 

Parameter, 

Process, 

Initial 

Conditions, 

Driver, 

Observation 

No 

TSLM-Lag Empirical Temperature Air Temperature No No 
Process, 

Driver 
Yes 

JR-Physics Process Temperature Air Temperature Yes Yes Driver No 

GLEON-Physics Process Temperature 

Air Temperature, 

Relative Humidity, 

Surface Downwelling 

Shortwave, Eastward 

Wind, Northward Wind 

Yes Yes Process No 

Persistence Null 
Temperature, 

Oxygen 
- Yes Yes Process No 

ARIMA Empirical 
Temperature, 

Oxygen 
- Yes Yes Process Yes 

ETS Empirical 
Temperature, 

Oxygen 
- Yes Yes Process Yes 

LM-Humidity Empirical 
Temperature, 

Oxygen 
Relative Humidity No No Driver Yes 

LM-Humidity-All Empirical 
Temperature, 

Oxygen 
Relative Humidity No No Driver Yes 
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Lasso ML 
Temperature, 

Oxygen 

Air Temperature, Air 

Pressure, Relative 

Humidity, Surface 

Downwelling 

Longwave, Surface 

Downwelling 

Shortwave, 

Precipitation Flux, 

Northward Wind, 

Eastward Wind 

No No Driver No 

LM-Precip Empirical 
Temperature, 

Oxygen 
Precipitation No No Driver Yes 

LM-Precip-All Empirical 
Temperature, 

Oxygen 
Precipitation No No Driver Yes 

Random Forest ML 
Temperature, 

Oxygen 

Air Temperature, Air 

Pressure, Relative 

Humidity, Surface 

Downwelling 

Longwave, Surface 

Downwelling 

Shortwave, 

Precipitation, Eastward 

Wind, Northward Wind 

No No Driver No 

TBATS Empirical 
Temperature, 

Oxygen 
- Yes Yes Process Yes 

LM-Temp Empirical 
Temperature, 

Oxygen 
Air Temperature No No Driver Yes 

LM-Temp-All Empirical 
Temperature, 

Oxygen 
Air Temperature No No Driver Yes 

XGBoost ML 
Temperature, 

Oxygen 

Air Temperature, 

Surface Downwelling 

Shortwave, Relative 

Humidity 

No No 
Process, 

Driver 
Yes 
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Text S1. This supplementary text contains descriptions of the submitted models included in this paper. 

The model descriptions are provided by the forecast teams and include a description of the model’s 

structure and general forecasting methodology. Links to the automated repositories are provided.  

 

air2water (air2waterSat_2) 

The air2water model is a linear model fit using the function lm() in R and uses air temperature as 

a covariate. The model fits water temperature (Tw) as a function of air temperature (Ta) and generates a 

forecast using forecasted water temperatures, following: 

𝑇𝑤 =  𝑇𝑎 ∗  𝛽0  + 𝛽1 

where β0 is a slope term and β1 is an intercept. The uncertainty in drivers was obtained by using the 31 

ensemble members from the NOAA GEFS forecast.   

From these forecasted water temperatures, the dissolved oxygen concentration was estimated 

assuming 100% saturation of oxygen within the water (based on the temperature and elevation-dependent 

state calculation). To estimate the concentration of dissolved oxygen at saturation, the Eq.Ox.conc() in the 

rMR R package was used. 

This model was used to forecast water temperature and dissolved oxygen concentration at the 

seven lake sites, with the model fitted separately for each site.  

Team members:  This model was generated as an example model by EFI-NEON Challenge 

Organisers. 

Code repository: https://github.com/rqthomas/neon4cast-example/blob/main/forecast_model.R  

 

Baseline MME (Baseline_ensemble) 

The Baseline MME is a multi-model ensemble (MME) comprised of the two baseline models 

(day-of-year, persistence) submitted by Challenge organisers. To generate the MME, an ensemble 

forecast was generated by sampling from the submitted models (either from the ensemble members in the 

case of the persistence, or from the distribution for the day-of-year forecasts). The forecast included 200 

https://github.com/rqthomas/neon4cast-example/blob/main/forecast_model.R
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ensemble members, represented equally across the 2 individual models (100 per forecast). The steps to 

generate the MME were: 

1. Access submitted forecasts for the site and variable of interest (lake temperatures only) 

from the submissions S3 bucket. 

2. Subset by individual model ID. 

3. If the forecast is a distributional forecast: sample from the distribution using the 

forecasted mean and standard deviation to generate a sample of n = 100. 

4. If the forecast is an ensemble forecast: subsample the existing individual forecast 

ensemble members to generate n = 100 ensemble members. The parameter numbers (ensemble members) 

were consistent across the forecast horizon. 

Only sites with all individual forecasts present were submitted (a site, variable, and date had to be 

represented by both models). 

This model was used to forecast water temperature in the lake sites (BARC, CRAM, LIRO, 

PRLA, PRPO, SUGG, TOOK). See information about the individual forecast models for information of 

forecast uncertainty representation in each of the forecasts.  

Team members: Freya Olsson 

Code repository: https://github.com/OlssonF/NEON-simple-

baselines/blob/main/Models/baseline_ensemble.R  

 

Prophet model (cb_prophet) 

The Prophet model is an empirical model, specifically a non-linear regression model that includes 

seasonality effects (Taylor & Letham, 2018). The model relies on Bayesian estimation with an additive 

white noise error term: 

y(t) = g(t) + s(t) + h(t) + \epsilon_t, 

where g is a piecewise linear ‘growth’ term (with changepoints estimated by the algorithm), s is a 

seasonal effect (Fourier term), h is the effect of ‘holidays’, and epsilon is the white noise (error term). The 

https://github.com/OlssonF/NEON-simple-baselines/blob/main/Models/baseline_ensemble.R
https://github.com/OlssonF/NEON-simple-baselines/blob/main/Models/baseline_ensemble.R
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model does not include any covariate. We use the implementation of the Prophet model provided in the 

darts Python package (Herzen et al., 2022). See https://github.com/unit8co/darts 

This model was used to forecast water temperature and dissolved oxygen concentration in the 

seven lake sites, with the model fitted separately for each site. 

Code repository: https://github.com/cboettig/forecasts-darts-framework  

Team members: Carl Boettiger, Marcus Francois Lapeyrolerie, Felipe Montealegre-Mora 

 

Day-of-year (climatology) 

The day-of-year (climatology) is a baseline model that assumes that forecasted conditions will be 

the same as the average of historical observations for that day-of-year (DOY). For each variable/site 

combination, the model calculates the mean (μ) and the standard deviation (σ) of the historical 

observations for each DOY. We assume that σ is consistent across the forecast horizon and so the median 

DOY σ is calculated for each new forecast (which can change between forecast dates but not across a 

forecast horizon).   

Because of differences in sensor deployment (e.g., some lake sensors are removed in winter), not 

all DOYs have observations. Missing DOY means are filled using a linear interpolation, as long as at least 

two DOYs have values during the forecast period.  

For the year 2023, the forecasts for each DOY do not change among forecast dates as no new data 

were collected during the forecast period (1 January 2023 - 31 December 2023) that would contribute to 

updated means or standard deviations.  

This model was used to forecast water temperature and dissolved oxygen concentration in the 

seven lake sites, with the model fitted separately for each site.  

Team members: this model was generated as a baseline model by EFI-NEON Challenge 

Organisers 

Code repository: https://github.com/eco4cast/neon4cast-

ci/blob/main/baseline_models/models/aquatics_climatology.R  

https://github.com/unit8co/darts
https://github.com/cboettig/forecasts-darts-framework
https://github.com/eco4cast/neon4cast-ci/blob/main/baseline_models/models/aquatics_persistenceRW.R
https://github.com/eco4cast/neon4cast-ci/blob/main/baseline_models/models/aquatics_persistenceRW.R
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fARIMA (fARIMA) 

The fARIMA is an empirical model that fits an ARIMA model using the fable R package 

(O’Hara-Wild, Hyndman, & Wang 2023) as a function of a linear model with air temperature. The default 

ARIMA() function automatically chooses the best ARIMA model for the time-series, using a step-wise 

procedure.  

The process uncertainty is generated from the standard deviation in the residuals of the fitted 

model. We could not assume a normal distribution in residuals and so opted to generate an ensemble 

forecast using a bootstrap approach within the generate() function from fable. In addition, we used the 31 

ensemble members from the NOAA GEFS as driver uncertainty. For each NOAA ensemble member, an 

ensemble forecast with six ensemble members was generated using the generate() function resulting in a 

total of 31 x 6 = 186 ensemble members per forecast.  

Not all sites have observations for all days due to differences in maintenance (e.g., some lake 

sites have sensors removed in winter). Therefore, to account for the difference in the time since last 

observation, the forecast was started at the day after the last observation, and the horizon modified to 

cover up to 30 days into the future from the forecast date. During this ‘catch-up’ period, the pseudo-

observation of air temperature used in model training was used to generate water temperature rather than 

forecasted air temperature.   

This model was used to forecast water temperature in the seven lake sites, with the model fitted 

separately for each site. 

Team members: Freya Olsson, R. Quinn Thomas 

Code repository: https://github.com/OlssonF/NEON-simple-

baselines/blob/main/Models/ARIMA_model.R  

 

 

 

https://github.com/OlssonF/NEON-simple-baselines/blob/main/Models/ARIMA_model.R
https://github.com/OlssonF/NEON-simple-baselines/blob/main/Models/ARIMA_model.R
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fARIMA-DOY MME (fARIMA_clim_ensemble) 

The fAMIRA-DOY MME is a multi-model ensemble (MME) composed of two empirical 

models: an ARIMA model (fARIMA) and day-of-year model. To generate the MME, an ensemble 

forecast was generated by sampling from the submitted models’ ensemble members. The forecast 

included 200 ensemble members, represented equally across the two individual models (n=100). The 

steps to generate the MME were: 

1. Access submitted forecasts for the site and variable of interest (lake temperatures only) 

from the submissions S3 bucket. 

2. Subset by individual model ID. 

3. Subsample the existing individual forecast ensemble members to generate 100 ensemble 

members. The parameter numbers (ensemble members) were consistent across the forecast horizon. 

4. Only sites with all individual forecasts present were submitted (a site, variable and date 

had to be represented by both models). 

This model was used to forecast water temperature in the seven lake sites, with the model fitted 

separately for each site. See information about the individual forecast models for information of forecast 

uncertainty representation in each of the forecasts.  

Team members: Freya Olsson 

Code repository: https://github.com/OlssonF/NEON-simple-

baselines/blob/main/Models/fARIMA_clim_ensemble.R  

 

LER MME (flare_ler) 

The LER MME is a multi-model ensemble (MME) derived from the three process models from 

FLARE (FLARE-GLM, FLARE-GOTM, and FLARE-Simstrat). To generate the MME, an ensemble 

forecast was generated by sampling from the submitted models’ ensemble members. The forecast 

included 198 ensemble members, represented equally across the 3 individual models (n=66). The steps to 

generate the MME were: 

https://github.com/OlssonF/NEON-simple-baselines/blob/main/Models/fARIMA_clim_ensemble.R
https://github.com/OlssonF/NEON-simple-baselines/blob/main/Models/fARIMA_clim_ensemble.R
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1. Access submitted forecasts for the site and variable of interest (lake temperatures only) 

from the submissions S3 bucket. 

2. Subset by individual model ID. 

3. Subsample the existing individual forecast ensemble members to generate 66 ensemble 

members. The parameter numbers (ensemble members) were consistent across the forecast horizon. 

4. Only sites with all individual forecasts present were submitted (a site, variable and date 

had to be represented by all 3 models). 

This model was used to forecast water temperature in six lake sites (BARC, CRAM, LIRO, 

PRLA, PRPO, SUGG), but not TOOK, with the model fitted separately for each site. See information 

about the individual forecast models for information of forecast uncertainty representation in each of the 

forecasts.  

Team members: Freya Olsson 

Code repository: https://github.com/OlssonF/NEON-simple-

baselines/blob/main/Models/flare_ler_ensemble.R  

 

LER-baselines MME (flare_ler_baselines) 

The LER-baselines model is a multi-model ensemble (MME) comprised of the three process 

models from FLARE (FLARE-GLM, FLARE-GOTM, and FLARE-Simstrat) and the two baseline 

models (day-of-year, persistence), submitted by Challenge organisers. To generate the MME, an 

ensemble forecast was generated by sampling from the submitted model’s ensemble members (either 

from an ensemble forecast in the case of the FLARE models and persistence, or from the distribution for 

the day-of-year forecasts). The forecast included 200 ensemble members, represented equally across the 5 

individual models (40 per forecast). The steps to generate the MME were: 

1. Access submitted forecasts for the site and variable of interest (lake temperatures only) 

from the submissions S3 bucket. 

2. Subset by individual model ID. 

https://github.com/OlssonF/NEON-simple-baselines/blob/main/Models/flare_ler_ensemble.R
https://github.com/OlssonF/NEON-simple-baselines/blob/main/Models/flare_ler_ensemble.R
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3. If the forecast is a distributional forecast: sample from the distribution using the 

forecasted mean and standard deviation to generate a sample of n = 40. 

4. If the forecast is an ensemble forecast: subsample the existing individual forecast 

ensemble members to generate n = 40 ensemble members. The parameter numbers (ensemble members) 

were consistent across the forecast horizon. 

5. Only sites with all individual forecast present were submitted (a site, variable, and date 

had to be represented by all 5 models). 

This model was used to forecast water temperature in six of the lake sites (BARC, CRAM, LIRO, 

PRLA, PRPO, SUGG), but not TOOK. See information about the individual forecast models for 

information of forecast uncertainty representation in each of the forecasts.  

Team members: Freya Olsson 

Code repository: https://github.com/OlssonF/NEON-simple-

baselines/blob/main/Models/ler_baselines_ensemble.R  

 

FLARE-GLM (flareGLM) 

The FLARE-GLM is a forecasting framework that integrates the General Lake Model 

hydrodynamic process model (GLM; Hipsey et al., 2019) and data assimilation algorithm to generate 

ensemble forecasts of lake water temperature. FLARE’s ensemble‐based forecasting algorithm generates 

forecasts using GLM that quantifies the uncertainty from driver data (weather forecasts from NOAA’s 

Global Ensemble Forecasting System; Hamill et al., 2022), initial conditions, model process, and model 

parameters and then samples from these sources of uncertainty to generate probability distributions for 

water temperature at multiple lake or reservoir depths (see Thomas et al., 2020).  

Daily forecasts were generated for the lake sites using the following steps: Step 1) access the 

FLARE-GLM forecasts from the day before (or, in the case of the first forecast, following a 60 day spin-

up); Step 2) use this prediction to initialise a GLM run that starts 5 days ago and runs to current day; Step 

3) use the ensemble Kalman filter (Evensen, 2003) to assimilate new observations collected over the past 

https://github.com/OlssonF/NEON-simple-baselines/blob/main/Models/ler_baselines_ensemble.R
https://github.com/OlssonF/NEON-simple-baselines/blob/main/Models/ler_baselines_ensemble.R
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5 days to update GLM’s states and parameters; and Step 4) use the updated states and parameters as initial 

conditions for a 1- to 30 day-ahead forecast that starts today.  Each forecast includes 256 ensemble 

members that quantify the uncertainty from driver data (weather forecasts), initial conditions, model 

process, and model parameters.  

Driver uncertainty: GLM requires the following weather covariates obtained from NOAA GEFS: 

air temperature, air pressure, relative humidity, wind speed (calculated from the north and east wind 

speeds), precipitation, and incoming shortwave and incoming longwave radiation. The water balance 

method was set to include no inflows or outflows and maintain a water level. Bathymetry data for the 

lakes were obtained from NEON. Uncertainty from drivers was generated based on the 31 ensemble 

members from NOAA GEFS.  

Initial conditions uncertainty: Initial conditions uncertainty was based on the spread of model 

states on Day 0 of the forecast that was set by spread in the 256 ensemble members following data 

assimilation on Day 0. 

Model process uncertainty: Process uncertainty was generated by adding random noise to each 

ensemble, drawing from a normal distribution with a standard deviation of 0.75 °C (after Thomas et al., 

2020). 

Model parameter: parameter uncertainty was generated using a unique parameter value assigned 

to each of the 256 ensemble members that was determined through data assimilation. The parameters that 

are tuned in the data assimilation algorithm are specific to the hydrodynamic model. In total, two 

parameters were tuned in the data assimilation process: lw_factor (longwave radiation scaling factor), and 

sed_temp_mean (annual mean sediment temperature, °C).  

Forecasts of daily surface water temperature were generated from the profiles output from 

FLARE-GLM by averaging temperatures forecasted in the top 1 m of the water column as a “surface” 

forecast. FLARE-GLM outputs forecasts for 00:00:00 and this is given as the daily forecast to the 

Challenge.  
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This model was used to forecast water temperature at the seven lake sites with the model 

parameters calibrated separately for each site. Additional information about FLARE configuration can be 

found in Thomas et al. (2020) and Thomas et al. (2023). 

Team members: Freya Olsson, R. Quinn Thomas, Cayelan C. Carey 

Code repository: https://github.com/FLARE-forecast/NEON-forecast-code/workflows/default 

 

FLARE-GLM-noDA (flareGLM_noDA) 

FLARE-GLM-noDA uses the same configuration as FLARE-GLM with the exception of the data 

assimilation (DA) algorithm. Within the noDA configuration, model states and parameters were not 

updated prior to forecast generation. Model parameters were calibrated before using observations of water 

temperatures and then brought ‘online’ to generate real-time forecasts using forecast drivers (NOAA 

weather data). Parameter uncertainty was calculated (as in FLARE-GLM), but the distributions were not 

updated between forecasts. The parameters calibrated were lw_factor (longwave radiation scaling factor), 

and sed_temp_mean (annual mean sediment temperature, °C).  

Forecasts of daily surface water temperature were generated from the profiles output from 

FLARE-GLM-noDA by averaging temperatures forecasted in the top 1 m of the water column as a 

“surface” forecast. FLARE-GLM-noDA outputs forecasts for 00:00:00 and this is given as the daily 

forecast to the Challenge.  

This model was used to forecast water temperature at the seven lake sites, with the model 

parameters calibrated separately for each site. Additional information about FLARE configuration can be 

found in Thomas et al., (2020) and Thomas et al. (2023). 

Team members: Freya Olsson, R. Quinn Thomas 

Code repository: https://github.com/FLARE-forecast/NEON-forecast-code/workflows/default 

 

 

 

https://github.com/FLARE-forecast/NEON-forecast-code/workflows/default
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FLARE-GOTM (flareGOTM) 

FLARE-GOTM uses the same principles and overarching framework as FLARE-GLM, with the 

hydrodynamic model replaced with the General Ocean Turbulence Model (GOTM). GOTM is a 1-D 

hydrodynamic turbulence model (Umlauf et al., 2005) that estimates water column temperatures. The 

integration of FLARE and GOTM was achieved using the LakeEnsemblR R package (Moore et al., 

2021). Sources of uncertainty remain the same and are generated using equivalent methods. The 

parameters that were tuned in the data assimilation algorithm were specific to the hydrodynamic model 

and in the case of GOTM are swr_scale (short-wave radiation scaling factor) and/or wind_scale (wind 

speed, u10, scaling factor), depending on the site’s sensitivity. See FLARE-GLM for a full description of 

the sources of uncertainty and the forecast generation method.  

Forecasts of daily surface water temperature were generated from the profiles output from 

FLARE-GOTM by averaging temperatures forecasted in the top 1 m of the water column as a “surface” 

forecast. FLARE-GLM outputs forecasts for 00:00:00 and this is given as the daily forecast to the 

Challenge.  

This model was used to forecast water temperature in 6 of the lake sites (BARC, CRAM, LIRO, 

PRLA, PRPO, SUGG), but not TOOK, with the model parameters calibrated separately for each site.  

Additional information about FLARE configuration can be found in Thomas et al., (2020) and Thomas et 

al. (2023). 

Team members: Freya Olsson, R. Quinn Thomas 

Code repository: https://github.com/FLARE-forecast/NEON-forecast-code/workflows/ler 

 

FLARE-GOTM-noDA (flareGOTM_noDA) 

FLARE-GOTM-noDA uses the same configuration as FLARE-GLM with the exception of the 

data assimilation (DA) algorithm. Within the noDA configuration, model states and parameters are not 

updated prior to forecast generation. Model parameters were calibrated before using observations of water 

temperatures and then brought ‘online’ to generate real-time forecasts using forecast drivers (NOAA 

https://github.com/FLARE-forecast/NEON-forecast-code/workflows/ler
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weather data). Parameter uncertainty was calculated (as in FLARE-GOTM) but the distributions were not 

updated between forecasts. The parameters calibrated were swr_scale (short-wave radiation scaling 

factor), and/or wind_scale (wind speed, u10, scaling factor).  

Forecasts of daily surface water temperature were generated from the profiles output from 

FLARE-GOTM-noDA by averaging temperatures forecasted in the top 1 m of the water column as a 

“surface” forecast. FLARE-GOTM-noDA outputs forecasts for 00:00:00, which is submitted as the daily 

forecast to the Challenge.  

This model was used to forecast water temperature in six of the lake sites (BARC, CRAM, LIRO, 

PRLA, PRPO, SUGG), but not TOOK, with the model parameters calibrated separately for each site.  

Additional information about FLARE configuration can be found in Thomas et al. (2020) and Thomas et 

al. (2023). 

Team members: Freya Olsson, R. Quinn Thomas 

Code repository: https://github.com/FLARE-forecast/NEON-forecast-code/workflows/ler 

 

FLARE-Simstrat (flareSimstrat) 

FLARE-Simstrat uses the same principles and overarching framework as FLARE-GLM with the 

hydrodynamic model replaced with Simstrat. Simstrat is a 1-D hydrodynamic turbulence model 

(Goudsmit et al., 2002) that estimates water column temperatures. The integration of FLARE and 

Simstrat was achieved using the LakeEnsemblR R package (Moore et al., 2021). Sources of uncertainty 

remain the same and are generated using equivalent methods. The parameters that are tuned in the data 

assimilation algorithm are specific to the hydrodynamic model and in the case of Simstrat were 

p_sw_water (short-wave radiation scaling factor) and/or f_wind (wind speed scaling factor), depending 

on the site’s sensitivity. See FLARE-GLM for a full description of the sources of uncertainty and the 

forecast generation method.  

Forecasts of daily surface water temperature were generated from the profiles output from 

FLARE-Simstrat by averaging temperatures forecasted in the top 1 m of the water column as a “surface” 

https://github.com/FLARE-forecast/NEON-forecast-code/workflows/ler
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forecast. FLARE-Simstrat outputs forecasts for 00:00:00, which is submitted as the daily forecast for the 

Challenge.  

This model was used to forecast water temperature at the seven lakes, with the model parameters 

calibrated separately for each site. Additional information about FLARE configuration can be found in 

Thomas et al. (2020) and Thomas et al. (2023). 

Team members: Freya Olsson, R. Quinn Thomas 

Code repository: https://github.com/FLARE-forecast/NEON-forecast-code/workflows/ler  

 

FLARE-Simstrat-noDA (flareSimstrat_noDA) 

FLARE-Simstrat-noDA uses the same configuration as FLARE-Simstrat with the exception of 

the data assimilation (DA) algorithm. Within the noDA configuration, model states and parameters were 

not updated prior to forecast generation. Model parameters were calibrated before using observations of 

water temperatures and then brought ‘online’ to generate real-time forecasts using forecast drivers 

(NOAA weather data). Parameter uncertainty was calculated (as in FLARE-Simstrat) but the distributions 

were not updated between forecasts. The parameters calibrated were p_sw_water (incoming short-wave 

radiation scaling factor), and/or f_wind (wind speed scaling factor).  

Forecasts of daily surface water temperature were generated from the profiles output from 

FLARE-Simstrat-noDA by averaging temperatures forecasted in the top 1 m of the water column as a 

“surface” forecast. FLARE-Simstrat-noDA outputs forecasts for 00:00:00 and this is given as the daily 

forecast to the Challenge.  

This model was used to forecast water temperature at the seven lake sites, with the model 

parameters calibrated separately for each site.  Additional information about FLARE configuration can be 

found in Thomas et al. (2020) and Thomas et al. (2023). 

Team members: Freya Olsson, R. Quinn Thomas 

Code repository: https://github.com/FLARE-forecast/NEON-forecast-code/workflows/ler 

 

https://github.com/FLARE-forecast/NEON-forecast-code/workflows/ler
https://github.com/FLARE-forecast/NEON-forecast-code/workflows/ler
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TSLM-lag (fTSLM_lag) 

This is a simple time series linear model in which water temperature is a function of air 

temperature of that day and the previous day’s air temperature. The TSLM was fit using the TSLM() 

function from the fable R package (O’Hara-Wild M, Hyndman R, Wang E, 2023).  

The process uncertainty is generated from the standard deviation in the residuals of the fitted 

model. We could not assume a normal distribution in residuals and so opted to generate an ensemble 

forecast using a bootstrap approach within the generate() function from fable. In addition, we used the 31 

ensemble members from the NOAA GEFS as driver uncertainty. For each NOAA ensemble member, an 

ensemble forecast with six ensemble members was generated using the generate() function resulting in a 

total of 31 x 6 = 186 ensemble members per forecast.  

Not all sites have observations for all days due to differences in maintenance (e.g., some lake 

sites have sensors removed in winter). Therefore, to account for the difference in the time since last 

observation, the forecast was started at the day after the last observation, and the horizon modified to 

cover up to 30 days into the future from the forecast date. During this ‘catch-up’ period the pseudo-

observation of air temperature, used in model training, was to generate water temperature rather than 

forecasted air temperature.   

This model was used to forecast water temperature at the seven lake sites, with the model fitted 

separately for each site.  

Team members: Freya Olsson, R. Quinn Thomas 

Code repository: https://github.com/OlssonF/NEON-simple-

baselines/blob/main/Models/TSLM_lags.R  

 

JR-physics (GLEON_JRabaey_temp_physics) 

The JR-physics model is a simple process model based on the assumption that surface water 

temperature should trend towards equilibration with air temperature with a lag factor.  

https://github.com/OlssonF/NEON-simple-baselines/blob/main/Models/ARIMA_model.R
https://github.com/OlssonF/NEON-simple-baselines/blob/main/Models/ARIMA_model.R
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Initial conditions for the model were set using the most recently available temperature data for 

each site. Forecasted water temperature was calculated as: 

𝑇𝑤𝑡+1 =  𝑇𝑤𝑡 + 𝑙(𝑇𝑎𝑡+1  −  𝑇𝑤𝑡)  

where Tw is surface water temperature, Ta is forecasted air temperature, and l is the air-water 

equilibration lag factor. l was set to 0.2 for all sites.    

Each forecast is generated using the 31 ensemble air temperature forecasts from the NOAA GEFS 

weather forecast. The model is iteratively fit each day as new data are generated by NEON.  

Driver uncertainty was included by using the 31 ensemble members from the NOAA GEFS 

weather forecast. No uncertainties from initial conditions or model process were included in the overall 

forecast uncertainty.  

This model was used to forecast water temperature at the seven lake sites, with the model fitted 

separately for each site.  

Team members: Joseph Rabaey 

Code Repository: https://github.com/jrabaey/Neon4cast-JR-Physics 

 

GLEON-physics (GLEON_physics) 

A simple, process-based model was developed to replicate the water temperature dynamics of a 

surface water layer sensu Chapra (2008). The model focus was only on quantifying the impacts of 

atmosphere-water heat flux exchanges on the idealized near-surface water temperature dynamics: 

𝜕𝑇

𝜕𝑡
=

1

𝛥𝑧

(𝑄 + 𝐻)

𝑐𝑝𝜌𝑤
  

where T is water temperature, t is time (fixed time step of 3600 s), 𝛥z is the thickness of the near-surface 

layer which is assumed to be 1 m, Q is the net heat flux, H is internal heat generation due to incoming 

short-wave radiation, cp is the heat capacity of water, and 𝜌𝑤 is water density. Q represents the amount of 

energy from short-wave radiation that is absorbed directly in the surface layer: 

𝑄 = (1 − 𝛼)𝑄𝑠𝑤 

https://github.com/jrabaey/Neon4cast-JR-Physics
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with 𝛼 as a constant albedo of 0.1. The net heat flux H is the sum of four terms: 

𝐻 = 𝐻𝑙𝑤 + 𝐻𝑙𝑤𝑟 + 𝐻𝑣 + 𝐻𝑐, 

where the terms on the right-hand side represent incoming long-wave radiation, emitted long-wave 

radiation from the water, the latent heat flux, and the sensible heat flux, respectively.  

The heat fluxes were derived using the formulations from Livingstone and Imboden (1989), 

Goudsmit et al. (2002), and Verburg and Antenucci (2010). Note that the latent and sensible heat fluxes 

were calculated by including the actual surface area of the respective lake. To replicate the heat flux 

dynamics, the model used mean forecasted air temperature, relative humidity, air pressure, short-wave 

radiation, and wind speed from NOAA GEFS. Air vapor pressure was quantified from air temperature 

and relative humidity. Cloud cover was calculated using the empirical formulation from Martin and 

McCutcheon (1998). Whenever water temperatures became less than the freezing point temperature of 

water (assumed to be 0 °C), water temperatures were set to 0 °C. 

We approximated the water temperature of the next time step using an explicit Euler forward 

scheme, and also by including an error term on the right-hand side to account for stochastic fluctuations: 

𝑇𝑡+1 = 𝑇𝑡 +
𝛥𝑡

𝛥𝑧

(𝑄 + 𝐻)

𝑐𝑝𝜌𝑤
+ 𝑁(𝜇, 𝜎) 

where 𝜇 was set to 0 °C, and 𝜎 to 0.05 °C. For every prediction, we ran 100 model runs to quantify 

process uncertainty through the error term. No uncertainties from initial conditions, drivers, or parameter 

estimations were included in the overall forecast uncertainty. 

This model was used to forecast water temperature at the seven lake sites, with the model fitted 

separately for each site.  

Team members: Robert Ladwig, Xiao Yang 

Code repository: https://github.com/robertladwig/NEON-simple-baselines/tree/main  

 

 

Persistence (persistenceRW) 

https://github.com/robertladwig/NEON-simple-baselines/tree/main


25 

 

The persistence (persistenceRW; random walk) is a baseline model that assumes, on average, 

conditions over the forecast horizon will be the same as the last observation, with uncertainty driven by a 

random walk process.  

𝑦𝑇+1 =  𝑦𝑇 + 𝑒𝑇+1 

where yT is today’s observation or forecast, eT+1 is random noise, and yT+1 is the next day’s forecast. The 

uncertainty (𝑒𝑇+1) in the persistence model forecasts was generated using a bootstrapping method with no 

assumption placed on the distribution of the forecast. We assumed that future uncertainty will be drawn 

from the same distribution of the residual error in the fit to historical data. We fit the model to historical 

observations, using the RW() (Random walk) function in the fable R package (version 0.3.2; O’Hara-

Wild et al., 2022), and the model error or residual (e) was calculated between the model and observations. 

At each timestep, a value of 𝑒𝑇+1 was drawn from the distribution of these historic error values for each 

ensemble member. Overall, 200 ensemble members were generated for each timestep using this method 

using the fable generate() function and a bootstrap value of 200 (number of ensemble members).   

This model was used to forecast water temperature and dissolved oxygen concentration at the 

seven lake sites, with the model fitted separately for each site and variable.  

Team members: this model was generated as a baseline model by EFI-NEON Challenge 

Organisers. 

Code repository: https://github.com/eco4cast/neon4cast-

ci/blob/main/baseline_models/models/aquatics_persistenceRW.R; https://github.com/eco4cast/neon4cast-

ci/blob/main/baseline_models/R/fablePersistenceModelFunction.R  

 

ARIMA (tg_arima) 

The tg_arima model is an AutoRegressive Integrated Moving Average (ARIMA) model fit using 

the function auto.arima() from the forecast package in R (Hyndman et al. 2023; Hyndman et al., 2008). 

This is an empirical time series model with no covariates. The model is fit every day as new data are 

made available, and is fit separately for each site/variable combination. For sites/variables where all 

https://github.com/eco4cast/neon4cast-ci/blob/main/baseline_models/models/aquatics_persistenceRW.R
https://github.com/eco4cast/neon4cast-ci/blob/main/baseline_models/models/aquatics_persistenceRW.R
https://github.com/eco4cast/neon4cast-ci/blob/main/baseline_models/R/fablePersistenceModelFunction.R
https://github.com/eco4cast/neon4cast-ci/blob/main/baseline_models/R/fablePersistenceModelFunction.R
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observations were non-negative, we set the Box-Cox transformation parameter (lambda) in 

forecast::auto.arima() to “auto”, allowing a Box-Cox transformation to be automatically selected. 

Forecasts were generated based on the model fit using the forecast::forecast() function, and were 

submitted as normal distributions using the mean and standard deviation of the forecast output. 

This model was used to forecast water temperature and dissolved oxygen concentration at the 

seven lake sites, with the model fitted separately for each site.   

Team members: Abigail S.L. Lewis, Caleb J. Robbins 

Code repository:  

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts  

 

ETS (tg_ets) 

The tg_ets model is an Error, Trend, Seasonal (ETS) model fit using the function ets() from the 

forecast package in R (Hyndman et al. 2023; Hyndman et al., 2008). This is an empirical time series 

model with no covariates. The model is fit every day as new data are made available, and is fit separately 

for each site/variable combination. We interpolated all missing data in the time series for each 

site/variable combination using forecast::na.interp(). For sites/variables where all observations are non-

negative, we set the Box-Cox transformation parameter (lambda) in forecast::na.interp() to “auto”, 

allowing a Box-Cox transformation to be automatically selected. Forecasts were generated based on the 

model fit using the forecast::forecast() function, and were submitted as normal distributions using the 

mean and standard deviation of the forecast output. 

This model was used to forecast water temperature and dissolved oxygen concentration at the 

seven lake sites, with the model fitted separately for each site.  

Team members: Abigail S.L. Lewis, Caleb J. Robbins 

Code repository:  

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts  

 

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts
https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts
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TBATS (tg_tbats) 

The tg_tbats model is a TBATS (Trigonometric seasonality, Box-Cox transformation, ARMA 

errors, Trend and Seasonal components) model fit using the function tbats() from the forecast package in 

R (Hyndman et al. 2023; Hyndman et al., 2008). This is an empirical time series model with no 

covariates. The model is fit every day as new data are made available, and is fit separately for each 

site/variable combination. We interpolated all missing data in the time series for each site/variable 

combination using forecast::na.interp(). For sites/variables where all observations are non-negative, we 

set the Box-Cox transformation parameter (lambda) in forecast::na.interp() to “auto”, allowing a Box-

Cox transformation to be automatically selected. Forecasts were generated based on the model fit using 

the forecast::forecast() function, and were submitted as normal distributions using the mean and standard 

deviation of the forecast output. 

This model was used to forecast water temperature and dissolved oxygen concentration at the 

seven lake sites, with the model fitted separately for each site.    

Team members: Abigail S.L. Lewis, Caleb J. Robbins 

Code repository: 

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts  

 

LM-humidity (tg_humidity_lm) 

The tg_humidity_lm model is a linear model fit using the function lm() in R. This is a very simple 

model with only one covariate: relative humidity. The model is fit every day as new data are made 

available, and is fit separately for each site/variable combination.  

Driver uncertainty was included by using the 31 ensemble members from the NOAA GEFS 

weather forecast. No uncertainties from initial conditions or model process were included in the overall 

forecast uncertainty.  

This model was used to forecast water temperature and dissolved oxygen concentration at the 

seven lake sites, with the model fitted separately for each site. 

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts
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Team members: Abigail S.L. Lewis, Caleb J. Robbins 

Code repository: 

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts  

 

LM-humidity-all (tg_humidity_lm_all_sites) 

The tg_humidity_lm_all_sites model is a linear model fit using the function lm() in R. This is a 

very simple model with only one covariate: relative humidity. The model is fit every day as new data are 

made available, and is fit across all sites, using site ID as a factor in the regression.  

Driver uncertainty was included by using the 31 ensemble members from the NOAA GEFS 

weather forecast. No uncertainties from initial conditions or model process were included in the overall 

forecast uncertainty.  

This model was used to forecast water temperature and dissolved oxygen concentration at the 

seven lake sites, with the model fitted for all sites together. 

Team members: Abigail S.L. Lewis, Caleb J. Robbins 

Code repository:  

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts  

 

LM-precip (tg_precip_lm) 

The tg_precip_lm model is a linear model fit using the function lm() in R. This is a very simple 

model with only total precipitation used as a model covariate. The model is fit every day as new data are 

made available, and is fit separately for each site/variable combination.  

Driver uncertainty was included by using the 31 ensemble members from the NOAA GEFS 

weather forecast. No uncertainties from initial conditions or model process were included in the overall 

forecast uncertainty.  

This model was used to forecast water temperature and dissolved oxygen concentration at the 

seven lake sites, with the model fitted separately for each site. 

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts
https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts
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Team members: Abigail S.L. Lewis, Caleb J. Robbins 

Code repository:  

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts  

 

LM-precip-all (tg_precip_lm_all_sites) 

 

The tg_precip_lm_all_sites model is a linear model fit using the function lm() in R. This is a very 

simple model with only one covariate: total precipitation. The model is fit every day as new data are made 

available, and is fit across all sites, using site ID as a factor in the regression.  

Driver uncertainty was included by using the 31 ensemble members from the NOAA GEFS 

weather forecast. No uncertainties from initial conditions or model process were included in the overall 

forecast uncertainty. This model was used to forecast water temperature and dissolved oxygen 

concentration at the seven lake sites, with the model fitted for all sites together. 

Team members: Abigail S.L. Lewis, Caleb J. Robbins 

Code repository:  

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts  

 

LM-temp (tg_temp_lm) 

The tg_temp_lm model is a linear model fit using the function lm() in R. This is a very simple 

model with only one covariate: air temperature. The model is fit every day as new data are made 

available, and is fit separately for each site/variable combination.  

Driver uncertainty was included by using the 31 ensemble members from the NOAA GEFS 

weather forecast. No uncertainties from initial conditions or model process were included in the overall 

forecast uncertainty.  

This model was used to forecast water temperature and dissolved oxygen concentration in the 

seven lake sites, with the model fitted separately for each site. 

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts
https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts
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Team members: Abigail S.L. Lewis, Caleb J Robbins 

Code repository:  

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts  

 

LM-temp-all (tg_temp_lm_all_sites) 

The tg_temp_lm_all_sites model is a linear model fit using the function lm() in R. This is a very 

simple model with only one covariate: air temperature. The model is fit every day as new data are made 

available, and is fit across all sites, using site ID as a factor in the regression.  

Driver uncertainty was included by using the 31 ensemble members from the NOAA GEFS 

weather forecast. No uncertainties from initial conditions or model process were included in the overall 

forecast uncertainty.  

This model was used to forecast water temperature and dissolved oxygen concentration at the 

seven lake sites, with the model fitted for all sites together. 

Team members: Abigail S.L. Lewis, Caleb J. Robbins 

Code repository:  

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts 

 

Random Forest (tg_randfor) 

Random Forest is a machine learning model that is fitted with the ranger() function in the ranger 

R package (Wright & Ziegler 2017) within the tidymodels framework (Kuhn & Wickham 2020). The 

model drivers are unlagged air temperature, air pressure, relative humidity, surface downwelling 

longwave and shortwave radiation, precipitation, and northward and eastward wind. Only data prior to 

2023-01-01 were used for any model training; similarly, model fits were not updated with any 2023 data 

when generating forecasts in 2023. Hyperparameters were selected for each site using 10-fold cross 

validation (repeated 5 times per site), selecting the hyperparameter combination with the lowest average 

RMSE. The number of trees was set to 500 but we tuned two hyperparameters for a) the minimum node 

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts
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size for each tree and b) the number of randomly selected predictors. Model predictions are independent 

in time. The random forest model predicts observations for every NOAA GEFS ensemble member and 

forecast horizon of the predicted drivers, so only driver uncertainty is represented.  

This model was used to forecast water temperature and dissolved oxygen concentration in the 

seven lake sites, with the model fitted separately for each site. 

Team members: Abigail S.L. Lewis, Caleb J. Robbins 

Code repository:  

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts/tg_randfor/train

_model.R  

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts/tg_randfor/forec

ast_model.R  

 

Lasso (tg_lasso) 

Lasso is a machine learning model implemented in the same workflow as tg_randfor, but with 

different hyperparameter tuning. The model drivers are unlagged air temperature, air pressure, relative 

humidity, surface downwelling longwave and shortwave radiation, precipitation, and northward and 

eastward wind. Only data prior to 2023-01-01 were used for any model training; similarly, model fits 

were not updated with any 2023 data when generating forecasts in 2023. Hyperparameters were selected 

for each site using 10-fold cross validation (repeated 5 times per site), selecting the hyperparameter 

combination with the lowest average RMSE. Lasso regressions were fitted with the function glmnet() in 

the package glmnet (Tay et al. 2023), where the regularization hyperparameter (lambda) is tuned and 

selected with 10-fold cross validation. 

This model was used to forecast water temperature and dissolved oxygen concentration at the 

seven lake sites, with the model fitted separately for each site. 

Team members: Abigail S.L. Lewis, Caleb J. Robbins 

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts/tg_randfor/train_model.R
https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts/tg_randfor/train_model.R
https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts/tg_randfor/forecast_model.R
https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts/tg_randfor/forecast_model.R
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Code repository: 

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts/tg_lasso/train_model.R\

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts/tg_lasso/forecast_model

.R 

 

XGBoost (xgboost_parallel) 

The XGBoost model is an extreme gradient boosted random forest (XGBoost) machine learning 

model that uses predicted atmospheric conditions and day of year as covariates. This model utilises the 

xgboost R package (Chen & Guestrin 2016; Chen et al., 2023).  

A new model was trained for each site daily using air temperature, solar radiation (surface 

downwelling shortwave flux in air), relative humidity, and day of year. Models were trained on a random 

sample of 80% of the historic data, reserving 20% for evaluation. Models have 15 trees and for each tree 

to have a maximum depth of 10. The model was then evaluated on the remaining samples, the error 

variance being recorded. A forecast with 31 ensemble members was generated for each day in the 

forecasting horizon using the ensemble members from the NOAA GEFS weather forecast, representing 

driver uncertainty. Those predictions then have normally distributed random noise added to them 

matching the recorded error variance. Model uncertainty is derived from NOAA ensemble members as 

well as random noise based on estimated model accuracy (process uncertainty).  

This model was used to forecast water temperature and dissolved oxygen concentration at the 

seven lake sites, with the model fitted separately for each site. 

Team members: Gregory Harrison, R. Quinn Thomas 

Code Repository:  

Original: https://github.com/Grepath/XGBoostNeon4Casts/blob/main/Aquatics_ParallelXGB.R  

Forked (running automation): https://github.com/FLARE-

forecast/XGBoostNeon4Casts/blob/main/Aquatics_ParallelXGB.R  

  

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts/tg_lasso/train_model.R
https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts/tg_lasso/forecast_model.R
https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts/tg_lasso/forecast_model.R
https://github.com/Grepath/XGBoostNeon4Casts/blob/main/Aquatics_ParallelXGB.R
https://github.com/FLARE-forecast/XGBoostNeon4Casts/blob/main/Aquatics_ParallelXGB.R
https://github.com/FLARE-forecast/XGBoostNeon4Casts/blob/main/Aquatics_ParallelXGB.R
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