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Abstract1

2

• Manual assessment of flower abundance of different flowering plant3

species in grasslands is a time consuming process.4

• We present an automated approach to determine the flower abun-5

dance in grasslands from drone images using a deep learning (Faster6

R-CNN) object detection approach, which is trained and evaluated7

on data of five flights and two sites. Our deep learning network is8

able to identify and classify individual flowers.9

• The novel method allows generating spatially explicit maps of flower10

abundance that meets or exceeds the accuracy of the manually counted11

extrapolation method and is less labor intensive. The results are very12

good for some types of flowers with precision and recall being close13

to or higher than 90 %. Other flowers are detected poorly due to rea-14

sons such as lack of enough training data, appearance changes due15

to phenology or flowers being too small to be reliably distinguishable16

on the aerial images.17

• The method is able to give precise estimates of the abundance of18

many flowering plant species. The collection of more training data19

will allow better predictions in the future for the flowers that are20

not well predicted yet. The developed pipeline can be applied to21

any sort of aerial object detection problems.22

1 Keywords23

Aerial Images, Drones, Faster R-CNN, Flower Abundance Mapping, Machine24

Learning, Object Detection, Remote Sensing, Unmanned Aerial Vehicles25
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2 Introduction26

The service done by pollinators in farmlands is estimated to value more than27

150 Billion Euros a year worldwide (Gallai, Salles, Settele, & Vaissière 2009).28

Their declining numbers (Hallmann et al. 2017) motivate many ecologists to29

study their interplay with the environment. This includes the assessment of30

flower abundance and distribution, which is an extremely time consuming task.31

In the last 10 years, rapid development in sensor technology and robotics32

have enhanced the capabilities of unmanned aerial vehicles (UAVs) (Anderson33

& Gaston 2013; Pajares 2015; Sanchez-Azofeifa et al. 2017; Aasen, Honkavaara,34

Lucieer, & Zarco-Tejada 2018). Today it is both technologically possible and35

affordable to take ultra-high spatial resolution images of large areas (several36

deca-ha with ground resolution of 1 cm / pixel). When flying lower and slower,37

even resolutions of down to millimetres can be reached. Consequently, UAVs38

have also been used in many ecological settings. These include invasive species39

mapping (Martin et al. 2018; Müllerová et al. 2017; Hill et al. 2017; Kattenborn,40

Eichel, & Fassnacht 2019; de Sá et al. 2018), wild live assessment (Andrew &41

Shephard 2017; Hollings et al. 2018; Christiansen et al. 2019; Eikelboom et al.42

2019; Rey, Volpi, Joost, & Tuia 2017) and plant biodiversity estimation (Getzin,43

Wiegand, & Schöning 2012).44

Recently, deep learning based classification methods have appeared that are45

able to utilize the details of ultra high resolution image data. We use the Faster46

R-CNN object detection pipeline (Ren, He, Girshick, & Sun 2015). It utilizes47

deep convolutional neural networks (CNNs) to detect and classify objects in48

RGB images. A deep CNN is a network with many layers. It takes the pixels49

of an image as input and as output predicts the likelihood for each class label50

it has been trained on. Internally it applies thousands of learned filters to all51

regions of the image and in the end combines them to find the likelihood of52
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each class label. Recently, such approaches have also been introduced to detect53

and count animals (Eikelboom et al. 2019; Rey, Volpi, Joost, & Tuia 2017) and54

plants (Eikelboom et al. 2019; Kattenborn, Eichel, & Fassnacht 2019; Osco et al.55

2020) in an ecological context.56

Remote flower mapping in a grassland containing many species is a challeng-57

ing task, since the structures are fine and flowers might be occluded by other58

plants. Current approaches of automated flower mapping work with image res-59

olutions in the range of centimeters or even meters per pixel (Landmann et al.60

2015; Chen, Jin, & Brown 2019; Abdel-Rahman et al. 2015) and are therefore61

not suited to detect individual flowers and differentiate between flower species of62

similar color. Other approaches are handcrafted for a single species (Campbell63

& Fearns 2018; Horton, Cano, Bulanon, & Fallahi 2017) and are not applicable64

to a wide range of use cases.65

In this article we present a deep learning based method to collect information66

about flower abundance and distribution in grasslands from drone images. To67

evaluate its performance we address several questions:68

(i) Is it possible to identify flowers in overhead images with flowers spanning69

only a few pixels at a ground resolution of 1.5 mm per pixel using deep70

CNNs?71

(ii) How do UAV based automated counts compare to manual in field mea-72

surements by an expert?73

(iii) How does automatically generated flower abundance maps of a whole field74

compare to the educated guess by an expert?75
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3 Materials and Methods76

3.1 Overview77

The proposed method can be divided into the three main phases of data collec-78

tion (section 3.2), model training (section 3.3) and application to unseen images79

(section 3.4) as depicted in fig. 1.80

Figure 1: Overview of the proposed method. Grey colored steps might not be
necessary for some use cases.

Ranunculus sp
(n = 474)

Lotus cornicu-
latus (3271)

Galium
mollugo (659)

Crepis biennis
(159)

Centaurea
jacea (805)

-Ranunculus
bulbosus (442)

-Lotus corni-
culatus (2926)

-Galium mollugo
(202)

-Crepis biennis
(89)

-Centaurea jacea
(786)

-Ranunculus
friesianus (8)

-Lathyrus
pratensis (345)

-Achillea mille-
folium (338)

-Leontodon
hispidus (10)

-Lychnis
flos-cuculi (19)

-Ranunculus
acris (24)

-Daucus carota
(65)

-Tragopogon
pratensis (8)

-Carum carvi
(54)

-Picris
hieracioides (52)

Table 1: Plant species that are combined into one group.
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3.2 Data Collection81

3.2.1 Dataset82

The dataset on which the method is evaluated consists of 10000 annotated flow-83

ers. The aerial images are captured at two sites and five days from a flight height84

of 19 meters with a ground sampling distance of approximately 1.5 mm/pixel.85

For the collection of the flower dataset a drone model called TransformerUAV86

(Copting GmbH 2017) as well as a DJI Matrice 600 PRO (SZ DJI Technology87

Co., Ltd. 2018) were used. Both drones are programmed to fly along a prede-88

fined route such that the area is fully covered and the images have an overlap89

of 60 % to 90 %. Attached to the drone is a Sony ILCE-7RM2 (Sony Corpo-90

ration 2015) camera that takes 42.2 Megapixel photos in combination with a91

Zeiss Batis 1.8/85 telephoto lens (Carl Zeiss AG 2017). The weather was sunny92

on all flight days. One of the two sites has been managed extensively during93

the last 15 years such that the plant diversity in this meadow is very high. A94

total of 40 different flowering plant species have been found between May 23rd95

and July 3rd. Approximately half of these 40 flower species are omitted in the96

analysis because too few samples are present in the dataset to reasonably train97

a neural network. We excluded all flowers with less than 50 samples in total98

from the experiments. As summarized in table 1, some flowers are combined99

into groups because they have few annotated samples or they look similar to100

other flowers. Because the individual flowers within an inflorescence can rarely101

be identified in the drone images, all inflorescences are annotated as one flower102

instance. Subsequently, when referring to the term flower, inflorescences are103

included as well.104
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3.2.2 Traditional Data Acquisition105

Traditionally, information about flower abundance is acquired by counting or106

estimating the flowers by hand within survey plots which are distributed inside107

the area of interest. We used 15 survey plots that are one by one meters wide.108

Once the flowers present within the survey plots are counted or estimated, these109

numbers are extrapolated to the size of the whole area of interest. If the positions110

of the survey plots are well chosen, this method should produce a good estimate111

of the abundance of flowers. We carried out the traditional approach of manual112

counting in parallel to each iteration of the drone based data acquisition method113

and used it as a baseline.114

3.2.3 Drone Based Data Acquisition115

Before the drone flight, ground control points (GCPs) are placed inside the test116

region. For planning a proper placement of the GCPs, refer to Roth, Hund,117

& Aasen (2018). GCPs are small signs with a unique pattern facing upwards118

so that they can be recognized on the drone images. The exact GPS positions119

of all these GCPs are collected with a differential GPS with a precision of a120

few centimeters. Later they are used in the Agisoft software (Agisoft 2019)121

as described below. Having the GCPs in place, the drone can be flown along122

a predefined route across the field with a camera attached that takes a large123

amount of highly overlapping aerial images of the field. Using a drone with124

RTK GNSS potentially allows to omit the need for GCPs.125

After the flight, the relative positions of the large amount of overlapping126

aerial images are reconstructed and merged together into a large orthomosaic.127

An orthomosaic is a detailed, accurate photo representation of an area, created128

out of many photos that are stitched together and geometrically corrected. We129

use the structure from motion (SfM) appraoach (Ullman 1979; Harwin & Lucieer130
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2012) implemented in the software Agisoft Metashape Version 1.5.3 (Agisoft131

2019). Agisoft takes all aerial images as inputs. It aligns all photos and generates132

a point cloud model. We used a sparse point cloud. From the sparse point133

cloud either a digital surface model or a mesh of the topography of the research134

area can be created. Then, based on the topography and the reconstructed135

relative positions and orientations of the images, an orthomosaic is generated.136

We enabled the option blending disabled to use the original information of the137

images in the orthomosaic.138

Agisoft automatically detects the unique pattern on the GCPs to map the139

GPS coordinates to each of them. The advantage of providing the positions of140

the GCPs in the field is that Agisoft creates an orthomosaic that is orthorec-141

tified and georeferenced. Georeferencing of the orthomosaic is later needed to142

display the user’s position in the Android FieldAnnotator application as well143

as to be able to copy annotations to the single orthorectified images that are144

georeferenced (cf. 3.2.4 and 3.2.5 for further reading).145

3.2.4 Annotating146

Having an orthomosaic of the region of interest, flowers have to be annotated.147

The annotated flowers are needed as training data for the machine learning148

model. Since the survey plots needed for the traditional data acquisition are149

visible on the drone images, we annotated all flowers within these plots. This150

allows us to verify whether the number of flowers visible on the drone images151

are comparable to the number of flowers that are manually counted by hand.152

For annotating, we use the LabelMe program (Wada 2016) and an Android153

tablet application called FieldAnnotator which we specifically developed for this154

purpose. The advantage of being able to make the annotations on a tablet is that155

they can be made directly in the field. This might be necessary because some156

flowers can be very hard to distinguish in the image alone. If one can compare157
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the image to the actual flowers on site, the quality of the training data can be158

improved and it is made sure that the number of false annotations is minimized.159

Android tablets are not capable of handling large orthomosaics (around 50000160

times 50000 pixels for a 30 times 30 meters area). Therefore a script tiles the161

orthomosaic into small chunks of 256 times 256 pixels in various zoom levels162

before these tiles are then imported into the FieldAnnotator application. The163

resulting annotations are stored in a json file.164

3.2.5 Leveraging Overlapping Images165

Since the camera attached to the drone captures a large amount of highly over-166

lapping images, the idea is to use the overlapping images as additional training167

data. Since the flowers are pictured from a slightly different angle on each im-168

age and the background changes from image to image, this provides valuable169

additional training data. Grasslands have a very complex structure and it is170

hard to reconstruct the exact geometry of the images. Therefore, the copied171

annotations are slightly shifted within the overlapping images. To correct for172

the shift, a script lets the user view and adjust all annotations in the LabelMe173

application. These slight adjustments of the annotations take significantly less174

time than collecting new data.175

3.3 Model Training176

3.3.1 Selecting Regions of Interest in Annotated Images177

In case images are only partly annotated, we developed a script that allows the178

user to cut out certain regions (polygon shaped) from the images. Only the179

image pixels within these selected regions are kept while the rest of the image180

pixels are overridden with black. This ensures that the Tensorflow model (Abadi181

et al. 2015) does not learn to classify non-annotated flowers as the background182
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class.183

3.3.2 Image Preparation for Tensorflow184

The training data consisting of image files alongside with json files containing the185

annotations has to be converted into a format that is supported by Tensorflow.186

To do so, our pipeline automatically carries out the subsequent steps. First,187

the images are split up into tiles. The default tile size is set to 450 times 450188

pixels. These image tiles are then upscaled by a factor of two to 900 times 900189

pixel tiles as suggested by Hu & Ramanan (2017) and justified in supplementary190

material A.1.1. The tiles are overlapping such that flowers positioned on the191

edge of two tiles are not lost as training data but are always present as a whole192

in at least one tile. Additionally, all annotations (including point and polygon193

annotations) are converted to bounding boxes. Finally, the images are split up194

into train, test and validation set.195

3.3.3 Neural Network Training196

The core of the pipeline consists of a CNN. We use the Faster R-CNN archi-197

tecture. This architecture outputs the bounding box coordinates of the objects198

it recognizes on an input image. The Faster R-CNN architecture requires more199

compute power than other architectures but it has been shown that it performs200

well on aerial and other high resolution images (Carlet & Abayowa 2017; Huang201

et al. 2017). Since the default configuration of the Faster R-CNN architecture202

is not optimized to detect very small objects (Huang et al. 2017; Zhang et al.203

2017) of only a few pixels in diameter, such as flowers in aerial images, we204

adjusted some parameters (cf. A.1.1 in the supplementary materials for exper-205

iment results on different parameter combinations). Additionally, we use data206

augmentation techniques to increase the diversity of our dataset. The following207

data augmentation options are used: random horizontal and vertical flips, ran-208
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dom brightness adjustments, random contrast adjustments, random saturation209

adjustments and random box jittering.210

During training, the validation set is used to decide when to change the211

learning rate and when to stop training. Every 2500 steps the training is paused212

and the prediction algorithm followed by the evaluation algorithm is run on213

the validation set. The learning rate is adjusted if for the last 15000 steps214

no further improvements were made. After adjusting the learning rate two215

times from 3 × 10−4 to 3 × 10−5 and from 3 × 10−5 to 3 × 10−6, the training is216

stopped if for 15000 steps again no improvement on the performance has been217

made. The number of 15000 steps is chosen empirically. Reducing the learning218

rate twice by a factor of 10 is directly adapted from the Faster R-CNN default219

configuration. The evaluation metric can be chosen as either the F1 score or220

the mean average precision (mAP). Section 3.4 further explains the prediction221

and evaluation process.222

The number of training examples can vary heavily from class to class. There-223

fore each class is assigned a weight. The weight is inversely proportional to the224

number of training examples and influences the loss function during training.225

This ensures that the network does not just optimize to detect the most com-226

mon classes. Each mistake on a less common class has a much higher penalty227

to the loss function as a consequence. Once a network is fully trained it can be228

exported as an inference graph. This exported inference graph is then used by229

the prediction and evaluation scripts described in section 3.4.230

3.4 Application to Unseen Images231

3.4.1 Predictions232

The trained network can be used to make predictions on images of arbitrary233

size (e.g. orthomosaics) provided they have a similar ground sampling distance234
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to the training images. The pipeline handles the tiling of large images as well235

as the reassembling of the prediction results from the single tiles. Optionally236

a region of interest can be selected within an image. As a consequence, only237

the flower abundance within this region of interest is assessed by the prediction238

algorithm.239

The prediction algorithm draws the bounding boxes of all detected flowers240

onto the image and saves the statistics about the flower abundance to a json241

file. To improve the prediction accuracy, the tiles have an overlap of 100 pixels242

by default. This ensures that as long as a flower is not larger than 100 pixels in243

diameter, it is fully visible on at least one tile. Error prone predictions close to244

or on the edge of a tile can therefore be ignored because they are fully covered245

on the adjacent tile. Nevertheless, having this overlap introduces the problem of246

duplicate predictions. This is mitigated by applying non maximum suppression247

with an intersection-over-union threshold of 0.3 similar to Ozge Unel, Ozkalayci,248

& Cigla (2019). Meaning that for all predictions that have an overlap of more249

than 30 %, only the one with the highest confidence score is kept.250

3.4.2 Evaluations251

To evaluate the performance of a model, the predictions on the test set are252

compared to the ground truth of the test set. The main metrics of interest are253

precision and recall. To compute precision and recall values, the true positive254

(TP), false positive (FP) and false negative (FN) predictions have to be known.255

In order to obtain these values the predictions are sorted by their confidence.256

Then it is looped through all the predictions and each of them is compared to257

all ground truth bounding boxes of the same label. To compare two bounding258

boxes, the intersection-over-union (iou) formula is used:259
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iou =
intersection area

area of union

If the greatest iou value is greater than some threshold (default of 0.3),260

the corresponding ground truth box is marked as used and the prediction is261

marked as true positive. If the largest iou value is lower than the threshold,262

the prediction is marked as false positive. After this process is done for each263

prediction, all ground truth entries that are not marked as used are counted as264

false negatives. Having the TP, FP and FN numbers, the precision and recall265

values can easily be calculated using the following formulas:266

precision =
TP

TP + FP

267

recall =
TP

TP + FN

A good way to rate the performance of a model is to compute the F1 score.268

The F1 score is calculated as follows:269

F1 = 2 · precision · recall
precision + recall

The better the precision and recall values are, the better the F1 score gets.270

It rates precision and recall equally and reaches its maximum of 1 at perfect pre-271

cision and recall. As an alternative to the F1 score, the mean average precision272

(mAP) as defined in the PASCAL VOC Challenge Development Kit (Evering-273

ham & Winn 2011) can be used to rate a model’s performance.274

12



3.4.3 Visualizations275

The pipeline offers various options for visualizing the results. Apart from draw-276

ing the predictions as colored bounding boxes onto the images, erroneous pre-277

dictions can be highlighted. Additionally, heatmaps that visualize the density278

distribution of the flowers can be generated from the prediction output. The279

size of the kernel for the flower density mapping is customizable. Optionally the280

heatmap can be drawn directly onto the image. The heatmaps can be generated281

for an individual class or for all classes. If the input images are georeferenced,282

there is the option to generate one heatmap from a collection of images. If the283

images are overlapping, the heatmap indicates the average number of flowers284

found at a particular position. Furthermore, the user can provide the geo co-285

ordinates of the upper left and lower right corner of the desired output region.286

The script will then output a heatmap of exactly that region. This allows for287

time series generations. Example results of such time series generations can be288

viewed in section 4.3.289

4 Results290

4.1 Manual Counting vs Drone Image Based Tablet An-291

notations292

Since the exact same areas are annotated on the tablet as they are manually293

counted by hand, we are able to directly compare the numbers of flowers an-294

notated on the drone images on the tablet to the numbers of flowers manually295

counted by hand. Table 2 lists a representative subset of all flowers found within296

the test fields.297

Some flowers are hardly visible on the drone images and therefore signif-298

icantly less instances are counted in the tablet annotations compared to the299
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Flower Manually Counted Tablet Annotations
Leucanthemum vulgare 724 960
Onobrychis viciifolia 483 105
Lotus corniculatus 1943 748
Salvia pratensis 142 127
Ranunculus sp 431 474
Knautia arvensis 371 471
Trifolium pratense 129 72
Medicago lupulina 117 5
Centaurea jacea 25 28

Table 2: Comparison of selected manually counted total numbers to tablet
annotations.

manually counted data. Onobrychis viciifolia, Medicago lupulina and to some300

extent Trifolium pratense fall under this category. The flowers of Medicago301

lupulina are too small to be reliably identifiable on the drone images. Trifolium302

pratense and Onobrychis viciifolia would be large enough but often they are303

hardly distinguishable from the background. Refer to table 2 for visualizations304

of 25 flowers found within the test fields. For other flowers (Leucanthenum vul-305

gare, Ranunculus sp, Knautia arvensis and Centaurea jacea) there are more306

flowers annotated on the tablet than manually counted by hand (cf. section307

5.1).308

4.2 Prediction on a Meadow309

The idea of the experiments in this section is to simulate an as realistic as310

possible situation. The data of one of the five flights is entirely used as test311

data. 90 % of the data of all other flights is used as training data and 10 % as312

validation data.313

4.2.1 Performance inside Survey Plots314

We compared the tablet annotations with the deep learning predictions within315

the survey plots. The prediction performance for each flower can be obtained316

from table 4. A prediction is considered if its confidence score is greater than317
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Figure 2: Excerpts from aerial images of the most common flowers.
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0.2. The overall precision and recall are 87 % and 84.2 % respectively. The318

vast majority of the flowers present in the test data of June 14th are Knautia319

arvensis, Leucanthemum vulgare and Lotus corniculatus. These three flowers320

perform well and therefore the good overall score is mainly determined by these321

three flowers. All the other flowers perform worse than the overall performance322

indicates.323

Table 3 shows the confusion matrix of this experiment. It is striking that324

there are only a few confusions between different flowers (brown). The much325

more common cases are that flowers are predicted where there are none (red)326

and flowers are not predicted where they should be (orange). The green entries327

denote the correctly predicted flowers.328

Table 4 shows that the flowers with little training data tend to not perform329

well. The question is whether this is due to the lack of enough training data or330

because assigning an inversely proportional weight to each class during training331
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A. vulneraria 1 - - - - - - 3 - - - - - - 2
C. jacea - 27 - - - 17 - - - 1 - - 3 3 2
C. biennis - - 14 - - - - 5 - - - - - - 2
D. carthusianorum - 3 - 8 - 1 - - 10 - - - - 6 6
G. mollugo - - - - 8 - - - - - - - - - 8
K. arvensis - - - - - 412 1 - - - - - 2 - 23
L. vulgare - - 1 - 1 4 906 - - - - - 1 - 109
L. corniculatus - - 6 - - - 1 877 - - - - - - 142
O. viciifolia - 1 - - - 1 - - 45 - - - - 11 37
P. vulgaris - - - - - - - - - - - - - - -
Ranunculus sp - - - - - - - - - - - - - - -
R. alectorolophus - - - - - - - 1 - - - 8 - - 17
S. pratensis - - - - - - - - - - - - 12 - 3
T. pratense - - - - - 1 - - - - - - - 4 2
False Positives 4 6 17 - 32 24 31 117 3 - 1 5 6 18 -

Table 3: The table shows the confusion matrix. The columns represent what the
model predicted and the rows represent what the model should have predicted
(the ground truth). The green, red, orange and brown numbers denote TP, FP,
FN and confusions between two flowers respectively.
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is not sufficient to regularize the loss function. Therefore we trained a separate332

network in which the three best performing flowers (Leucanthemum vulgare, Lo-333

tus corniculatus and Knautia arvensis) are ignored and treated as background.334

With the mAP rising from 25.2 % to 31.5 % (f1 score improves from 47 % to335

51.3 %) a certain improvement can be seen but the performance is still signif-336

icantly below what is satisfactory. Therefore the possibility of leveraging two337

separately trained networks is not further evaluated.338

When looking at the predictions, there are various sources of errors appar-339

ent. Some examples can be seen in fig. 3. For Leucanthemum vulgare, a typical340

error occurs where two instances are very close to each other as in image a).341

In that case often only one of the two flowers is detected. The missing annota-342

tion is not caused by the non maximum suppression algorithm as a closer look343

discloses. Another typical source of errors are flowers that are on the verge of344

fading. In the case of image b) two flowers are detected that are not anno-345

tated in the ground truth because the botanical expert considered the flowers346

to be faded already. Even when manually counting the flowers by hand it is347

sometimes difficult to decide if a flower should be counted or not because of348

Flower Train
Instances

Test
Instances

Precision Recall mAP F1
Score

A. vulneraria 196 6 20.0 % 16.7 % 0.056 0.182
C. jacea 742 53 73.0 % 50.9 % 0.382 0.6
C. biennis 124 21 36.8 % 66.7 % 0.325 0.475
D. carthusianorum 20 34 100.0 % 23.5 % 0.235 0.381
G. mollugo 546 16 19.5 % 50.0 % 0.1 0.281
K. arvensis 429 438 89.6 % 94.1 % 0.879 0.918
L. vulgare 928 1022 96.5 % 88.6 % 0.861 0.924
L. corniculatus 2153 1026 87.4 % 85.5 % 0.772 0.864
O. viciifolia 92 95 77.6 % 47.4 % 0.407 0.588
R. alectorolophus 23 26 61.5 % 30.8 % 0.218 0.41
S. pratensis 133 15 50.0 % 80.0 % 0.436 0.615
T. pratense 109 7 9.5 % 57.1 % 0.104 0.163
Overall 5495 2759 87.0 % 84.2 % 0.398 0.855

Table 4: Performance of the prediction algorithm on all flower species present
in the field on June 14th. The numbers in the Train Instances and Test In-
stances columns refer to the ground truth annotations. The overall scores of
the performance metrics are weighted means.
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Figure 3: Selection of typical mispredictions. All thin bounding boxes are cor-
rect predictions. The bold red bounding boxes denote false positive and the
bold violet bounding boxes denote false negative predictions. There are various
explanations for the mispredictions: Overlapping flowers (a), partially withered
flowers (b and e), collections of flowers (c), missing ground truth annotations
(d) and flowers that are missing in the training data (f).
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the seamless transition from blooming to faded. Two main problems exist for349

Lotus corniculatus. Firstly, the blooms of Lotus corniculatus are often arranged350

as small inflorescences as visible in image a) in the bottom left or in image c).351

In some cases the network predicts the blooms of an inflorescence as individual352

instances while in the ground truth the whole inflorescence is annotated as one353

instance. The opposite case is common as well. The second problem of Lotus354

corniculatus are false positive predictions caused by missing ground truth an-355

notations (as in image d)). These problems are further discussed in section 5.1.356

The main error source of Knautia arvensis is again blooms that look different357

because they are wilting as for example in image e). In image f) the model er-358

roneously predicts a Knautia arvensis where there is a Anacamptis pyramidalis.359

Anacamptis pyramidalis is not included in the training because too few training360

instances exist.361

4.2.2 Performance outside Survey Plots362

We compared the predictions of the deep learning model on the full test field to363

the extrapolation of the manually counted flowers. The numbers of manually364

counted flowers are extrapolated to the size of the whole field which is 730365

square meters. Table 5 lists all flowers that are detected reasonably well inside366

Flower Drone Based
Prediction

Extrapolation of
Manual
Counting

Relative
Difference

Centaurea jacea 456 505 10.7 %
Knautia arvensis 8059 8308 3.1 %
Leucanthemum vulgare 7044 10778 53.0 %
Lotus corniculatus 50365* 51139 1.5 %
Onobrychis viciifolia 595 3761 532 %
Salvia pratensis 209 673 222 %

Table 5: Predictions on the whole field of 730 square meters. The 50365 pre-
dicted Lotus corniculatus are calculated as the multiplicative of the actual pre-
dictions of the network (19389) and a ratio of 2.6. The numbers in table 2
suggest that there are 2.6 blooms per prediction on average.
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the survey plots by the deep learning model. For each flower species the number367

of deep learning detections in the whole field is listed as well as the number of368

flowers predicted by the extrapolation of the manual counting.369

For Centaurea jacea, Knautia arvensis and Lotus corniculatus the number370

of drone based predictions is very similar to the extrapolation of the manually371

counted number of flowers. The results are within 11 %, 3 % and 2 % respec-372

tively. According to heatmaps generated from the drone based predictions (cf.373

section 4.3), these are also the flowers that are relatively evenly distributed.374

The extrapolation of the manually counted number of Leucanthemum vulgare375

is 53 % higher than the number of drone based predictions. The question is,376

which prediction is more accurate. Assuming that the performance of the pre-377

diction algorithm is similar on the whole field as it is inside the annotated survey378

plots, the extrapolation of the manual counting must be inaccurate. Even when379

adding 8 % to the number of drone based predictions to compensate for the rel-380

atively low recall value of Leucanthemum vulgare, the results still have a 47 %381

gap. The extrapolation is based on the manually counted number of flowers382

which is lower than the number of tablet annotations within the survey plots as383

pointed out in section 4.1. If the tablet based numbers were taken, the result384

of the extrapolation would be an additional 51 % higher making them a total385

of 131 % higher than the drone based predictions.386

The main reason for the bad results of Onobrychis viciifolia is that it is387

very hard to distinguish on the drone images. The most probable reason for388

the unsatisfactory results of Salvia pratensis is that the amount of training389

data is too low to accomplish good results. A likely additional reason is an390

unrepresentative choice of survey plot locations for these flowers.391
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4.3 Density Distribution Maps392

The heatmaps in fig. 4 depict the abundance of some selected individual flowers393

in one of our test fields on June 14th. The three heatmaps for Leucanthemum394

vulgare, Lotus corniculatus and Knautia arvensis are generated from the ortho-395

mosaic.396

Table 5 contains a time series of an excerpt of our main test site. It illustrates397

the difference of the abundance evolution of Leucanthemum vulgare and Lotus398

corniculatus. It is conspicuous that Lotus corniculatus is much more evenly399

distributed than Leucanthemum vulgare. While Leucanthemum vulgare has a400

peak population on June 6th, on July 3rd the population is almost completely401

Figure 4: Heatmaps of our main test site for various flower species. The last
image depicts the image coverage of the field. In the images, survey plots as
well as GCPs are visible.
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Figure 5: Timeseries of the distribution of Leucanthemum vulgare and Lotus
corniculatus in our main test field.
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faded. The peak population of Lotus corniculatus is much less pronounced.402

5 Discussion403

5.1 Different Approaches for Flower Abundance Mapping404

We evaluated different approaches to map flowers in grasslands. We used manual405

counting inside survey plots as a baseline and compared it to tablet annotations406

on images of the survey plots and automated deep learning based mapping inside407

the survey plots from drone images. Then we compared the extrapolations of408

the manual counting to the predictions of the deep learning model on the whole409

test field. Section 4.1 shows that some flowers have more tablet annotations in410

the images than are manually counted by hand inside the survey plots. This can411

be explained by the fact that manually counting flowers by hand requires a high412

level of concentration. Mistakes happen very easily if a lot of flowers are present413

within a small area. Annotating on an image has the advantage that flowers are414

marked and therefore the risk of counting twice or forgetting to count a flower is415

minimized. When combining these falsely counted numbers with non optimally416

chosen survey plot locations, the extrapolations of the manually counted flowers417

have the potential to be very inaccurate.418

With a reliable flower detection model, the results can be much more accu-419

rate than with the extrapolation from the manual counting. Moreover, the drone420

based approach has other advantages. The potential to have spatially explicit421

maps of flowers goes beyond what can be done with the traditional approach of422

extrapolating the manually counted numbers of flowers within the survey plots.423

Once a trained network is available, manually labelling the species to train the424

network is no more necessary. It is sufficient to fly the drone over the meadow425

and let the deep learning algorithm predict the species. The prediction time426

23



of the trained deep learning network for one square meter is approximately 7.4427

seconds using a GTX 1080 GPU (Nvidia Corporation 2016). On the contrary,428

manually counting the flowers by hand within a survey plot can take between429

one and ten minutes, depending on the flower density. The predictions of the430

network have to be controlled by a good botany expert.431

Whether it is possible to achieve reliable predictions for a certain flower432

on drone images depends on several factors. First, enough training data of433

the flower in question needs to be available. The results suggest that with a434

few hundred instances good performance can be achieved. Second, also the435

morphology of the flower has an impact. Flowers such as Galium mollugo are436

difficult for an object detection network to predict reliably. The cause seems437

to be that this flower can sometimes be very small and in other cases multiple438

instances of the same flower species cover a large area of partly overlapping439

inflorescences in which it is difficult to separate the single instances. In such440

cases it would be interesting to see how an image segmentation network such as441

U-Net (Ronneberger, Fischer, & Brox 2015), which predicts regions (pixels) that442

belong to a certain class, would perform. Third, the size of a flower should span443

a certain minimum amount of pixels. The good results of Lotus corniculatus444

suggest that a diameter of around 5 to 10 pixels is sufficient. These results are445

likely to be positively influenced by the distinct color and the strong contrast446

to the background of Lotus corniculatus. Other flowers of similar size such as447

Onobrychis viciifolia or Trifolium pratense perform significantly worse. These448

flowers are much harder to distinguish from the background. It is evident that449

distinguishability (mainly driven by contrast) is the fourth main factor which450

determines the prediction performance of a network for a particular flower.451

When taking a closer look at the results, a substantial portion of mispredic-452

tions that negatively influences the model performance scores such as mAP and453
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F1 score is not fatal. This includes for example false positives that are in fact454

missing annotations in the ground truth such as the examples in table 3. False455

positive predictions of flowers that are on the verge of fading fall under this456

category as well. The mispredictions caused by the confusion between single457

flowers and inflorescences of Lotus corniculatus as described in section 4.2.1 are458

not severe either. If such mispredictions were ignored, the performance scores459

would be better.460

These mispredictions exemplify the challenges that exist for the training data461

collection. Even when being able to directly compare the image on the tablet462

to the flowers on site, it is sometimes not clear how to annotate a flower. Lotus463

corniculatus is a good example. They are often arranged as inflorescences. It is464

not uncommon however that there are single flowers that do not belong to the465

same inflorescence. Since it is often not possible to distinguish the single flow-466

ers within an inflorescence, the whole inflorescence is annotated as one flower467

instance. Unfortunately there are border cases in which a single flower very468

close to another inflorescence is annotated as a separate instance in the ground469

truth but the prediction algorithm includes that flower in the inflorescence and470

predicts only one bounding box. This results in false negative predictions for471

the single flowers very close to the collection as the examples in image c) in472

table 3 show. The opposite case that multiple single flowers are predicted sepa-473

rately while they are annotated as an inflorescence with a single bounding box is474

common as well. The second main problem for Lotus corniculatus is that some475

instances are hardly visible on the images because they are very small. Some-476

times they are partly hidden by other vegetation and occasionally weak motion477

blur is present which makes it even harder to distinguish between flower and478

background. This problem also manifests itself in false positive and false neg-479

ative predictions. False positive predictions are mainly caused by background480
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areas that look similar to a blurred flower and real flowers which are not present481

in the ground truth annotations (as in image d)). The false negative predictions482

are often flowers that are small and hardly distinguishable.483

As demonstrated on the example of Lotus corniculatus in table 4, an average484

number of flowers per annotation can be calculated from the training data and485

manually counted data. This value can then be multiplied with the total amount486

of predictions to get the number of flowers.487

5.2 Influences of the Network Configuration and Image488

Resolution489

It is advised to scale up all images with objects that are smaller than 40 pixels490

in diameter by a factor of two in order to improve the performance of a network491

(Hu & Ramanan 2017). This is the case for the vast majority of flowers dealt492

with in this study. The Faster R-CNN architecture is not designed to detect493

very small objects such as flowers of just a few pixels in decimeter (Huang et al.494

2017; Zhang et al. 2017). Therefore scaling up the images is an appropriate495

counter measure which helped to improve our results.496

Data Augmentation options are a convenient way of artificially increasing497

the amount of training data. One should be careful with applying too many498

augmentation options. Since the flowers do not span a large number of pixels,499

they are predicted based on minuscule details. Changing these details too much500

might be counterproductive. Flips and random box jittering can be applied501

without hesitation. They do not alter the important details but only the orien-502

tation or the position of the bounding box. Brightness, contrast and saturation503

adjustment should be applied moderately. In our experiments the maximal504

change is a delta of 25 %.505
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5.3 Practical Considerations506

Our main test grassland site was around 30 times 30 meters large. In order to507

have enough overlapping images to generate an orthomosaic of this area, a drone508

has to fly over the meadow for about 20 minutes. This means that it is difficult509

to scale this approach to larger areas. A way of overcoming this problem is to510

take sample pictures with less or no overlap or at random locations of a larger511

meadow and therefore omitting the generation of an orthomosaic. Knowing512

the flight height and the lens angle of the camera, one can calculate the covered513

area of the image. Running the prediction algorithm on these sample images and514

extrapolating the numbers of predictions to the size of the whole meadow can515

still achieve very good results. The advantage over the manual counting flower516

abundance determination approach is that a much larger sample size can be517

collected. The effort to collect the vegetation data is smaller and more precise.518

This enables to spend more time for controlling, extrapolating and analysing519

the data, which finally earns a better result. What remains to be evaluated is520

whether the prediction algorithm generates similar results close to the edges of521

an image compared to the center. The viewing angle changes across an image522

which changes also the appearance of the imaged objects (Aasen & Bolten 2018;523

Roth, Aasen, Walter, & Liebisch 2018; Aasen 2016). Consequently there could524

be a degradation in prediction performance. The orthomosaics are created only525

from the center regions of the single images.526

Various metrics are used to describe a model’s performance. Precision, re-527

call, F1 score and mAP all describe a certain aspect of a model’s performance.528

It depends on the application case, which metric is most important. Precision529

and recall can easily be controlled with the minimum confidence parameter.530

The higher the minimum confidence parameter of the prediction script is set,531

the higher the precision gets. Lowering the minimum confidence score increases532
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the recall. For the abundance determination use case as in this study a bal-533

anced precision/recall ratio is advantageous, because false negatives and false534

positives are likely to cancel each other out and therefore a good estimate of the535

abundance can be given. The F1 score is mainly determined by precision and536

recall. The higher these two values are, the higher is the F1 score. A balanced537

ratio of precision and recall rewards the score even more. Consequently, the F1538

score is a good indicator of a model’s performance.539

We have used independent train, test and validation sets for our evaluations.540

In the future, the results should be validated in more ways, e.g. by using cross-541

validation or by testing the models on more unseen test sites as well as including542

data with different environmental conditions.543

The method developed in this study opens a wide range of use cases beyond544

the substitution of manual flower counting. Weed control could be realized in a545

precision agriculture setting. Detecting invasive neophyte plants in difficult-to-546

access areas could replace manual checks. The multitemporal abundance maps547

have the potential to map flowering dynamics quantitatively and spatially assess548

co-occurrence of different flowers and assess the influence of climate conditions549

of different years on the abundance. By detecting certain indicator species,550

conclusions may be drawn about the soil properties. The presence of Leucan-551

themum vulgare for example is an indicator for nutrient-poor meadows. In the552

context of quality assessment of meadows in connection with direct payments by553

the state, drone usage is imaginable. Apart from flowering plant detection, the554

method can be applied to other areas such as monitoring of wildlife aggregations555

as described by Lyons et al. (2019).556

For some use cases it might be beneficial to have real time detections. The557

method developed in this study is not designed for that. By using the default558

configuration of the Faster R-CNN architecture without upscaling the images,559
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the prediction algorithm can be sped up by a factor of four at least. The560

drawback is that the accuracy is lower. Nevertheless, for some use cases this561

might be acceptable. Using a more light weight object detection network design562

such as the SSD architecture (Liu et al. 2016) can deliver further speed ups.563

However, the accuracy is expected to be lower than with Faster R-CNN.564

More training data would have been beneficial to better train the underrep-565

resented flowers and catch flowers during their entire phenology. Unfortunately,566

this was not possible due to the failure of the initially used drone. However,567

with the now designed framework new training data can be created and pooled568

with the current training data to expand the training dataset and allow better569

predictions in the future. The suite of tools developed in this study is easy to570

install and can be applied to any sort of object detection problem on aerial im-571

ages. The time consuming task of training data collection by annotating aerial572

images can be carried out on the FieldAnnotator application for Android or573

with the widely used LabelMe application for desktop operating systems. The574

script that copies annotations onto overlapping images can be a powerful way575

of increasing the amount of training data without major efforts.576

Figure 6: Typical prediction example.
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Original
Image

Upscaled Image Various Image
Scales

Train Overlap Yes Yes Yes Yes Yes Yes
Data Augmentation Yes Yes Yes Yes Yes Yes
Anchor Size 128 Yes
Stride 16 Yes
Multiple Scales Yes
Precision 81.7 % 82.1 % 82.3 % 84.7 % 85.2 % 85.2 % 86.1 % 85.7 % 73.4 %
Recall 79.5 % 83.9 % 81.8 % 84.3 % 83.8 % 83.6 % 81.7 % 76.6 % 70.9 %
F1 Score 0.806 0.830 0.820 0.845 0.845 0.844 0.838 0.809 0.721
mAP 0.575 0.668 0.634 0.686 0.680 0.671 0.619 0.588 0.485

Table 6: Performance of various parameter configurations.

A Supplementary Materials760

A.1 Supplementary Results761

A.1.1 Faster R-CNN Parameter Tuning762

Table 6 shows the effects of certain parameter choices for the Faster R-CNN763

architecture. For each column in table 6, a network is trained and evaluated on764

the same data. All results are weighted average values across all flower species765

meaning that all TP, FP and FN values are summed up across all flower species766

and then the precision, recall and F1 score are calculated using these summed767

up values. All predictions having a confidence score below 0.2 are ignored for768

the evaluation. Having a limited amount of data available, the decision is made769

to use 70 % of the images of each flight for training, 20 % for testing and 10 %770

for validating. This splitting strategy ensures that the majority of the data is771

used for training but still large enough portions are available for validation and772

testing.773

As the first column of table 6 shows, using the original image size mainly774

hurts the recall metric. The low recall value indicates that many flowers are not775

detected by the trained network. Upscaling the images mitigates this problem776

as can be seen from the other columns of table 6. In all configurations marked777

with Upscaled Image, the image data is tiled into 450 times 450 pixel tiles. Each778

such tile is then scaled up to a 900 times 900 pixel tile. The drawback is that779
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this slows down the training and prediction process.780

The effect of adding a train overlap is not clear. While the recall, F1 score781

and mAP slightly drop compared to the configuration with only upscaled images782

(column 3 vs. column 2 in table 6), in combination with data augmentation783

options, the performance of these three metrics is better with a train overlap784

(column 5 vs column 4). The opposite happens with the precision metric.785

Using data augmentation techniques and a train overlap within the training786

pipeline results in the best performance in terms of recall, F1 score and mAP.787

The precision metric is only insignificantly lower than in other configurations.788

In all other experiments the configuration with data augmentation and train789

overlap is used.790

The fourth last column contains the results with the base anchor size set to791

128 pixels instead of default value of 256. Recall, F1 score and mAP are slightly792

worse than with a base anchor size of 256 pixels. The third last column shows793

the performance with the first_stage_features_stride, height_stride and794

width_stride parameters set to 16. The first_stage_features_stride de-795

fines the output stride of the extracted region proposal network feature map.796

A bigger first_stage_features_stride value has the consequence that the797

region proposal network of the Faster R-CNN architecture outputs a feature798

map with a lower resolution. The height_stride and the width_stride vari-799

ables control the distance in pixels of two consecutive anchors. An anchor is a800

location within the image from which various sizes of possible bounding boxes801

to be evaluated are spanned. Having a large distance between two such anchors802

might cause the network to miss flowers that are placed in between two such803

anchors. These changes are suggested in general by Ren, He, Girshick, & Sun804

(2015) and specifically for small objects by Zhang et al. (2017). The results805

show that the performance is worse than with these values set to the minimum806
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of 8. The recall value is notably lower than in the configuration with the stride807

values set to 8. This is an indication that some flowers are missed by the pre-808

diction network due to the lower coverage of anchors and the lower resolution809

of the feature map.810

Training networks with images of multiple scales did not result in promising811

prediction performance. Neither did applying a Lab or HSV color space trans-812

formation to the images improve the detection results (experiment results not813

included in table 6).814

A.1.2 Predictions on Simulated Resolutions815

The higher the drone can fly the more area can be covered with a single drone816

flight. Table 7 demonstrates the effect of decreasing ground resolution on an817

example excerpt of an aerial image containing a Leucanthemum vulgare flower818

and a Lotus corniculatus inflorescence. Figure 7 and 8 illustrate the effect of819

decreasing ground resolution on the F1 score and the mAP respectively. Both820

figures show that down to a ground resolution of 5 mm per pixel, there is just821

a marginal decrease in prediction performance. Further decreasing the ground822

resolution to 10 mm and 20 mm per pixel however has noticeable negative823

effects on the model’s performance. As expected, the performance of small824

flowers such as Lotus corniculatus decreases disproportionately because at a825

certain ground resolution they simply get indistinguishable. The average size826

of a Lotus corniculatus flower is around 16 mm. The performance of larger827

1 mm/pixel 1.4 mm/pixel 2 mm/pixel 3.3 mm/pixel 5 mm/pixel 10 mm/pixel 20 mm/pixel

Table 7: Resolution degradation on an except of an aerial image.
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Figure 7: Evolution of F1 score over various simulated ground resolutions.

flowers such as Leucanthemum vulgare (40 mm) and Knautia arvensis (34 mm)828

degrades notably slower. The graphs for the precision and recall metrics are829

omitted since the trends are equivalent to the trends of the F1 score and the830

mAP metric.831

Each training, test and validation image is first scaled down to the desired832

ground resolution and then scaled up again. After upscaling, all datasets have833

the same ground sampling distance (pixel size) as the original images again.834

This ensures that the flower’s sizes (in image pixels) are large enough to be835

detectable by the faster R-CNN network architecture and prevents performance836

losses caused by this problem as described by Hu & Ramanan (2017). For each837

ground resolution a network is trained and evaluated with the processed training838

images.839

A.2 FieldAnnotator Android Application840

For the annotations, an Android tablet application called FieldAnnotator has841

been developed. It can be downloaded from the Google Playstore. The advan-842

tage of being able to make the annotations on a tablet is that they can be made843

directly in the field. This is necessary because some flowers can be very hard844
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Figure 8: Evolution of mAP over various simulated ground resolutions.

to distinguish in the image alone. If one can compare the image to the actual845

flowers on site, the quality of the training data can be improved and it is made846

sure that the number of false annotations is minimized.847

A screenshot of the main window of the annotation application can be seen in848

figure 9. The output folder created by the image preprocessing tool mentioned849

in the previous subsection can be copied onto the Android tablet and imported850

into the annotation application (1). The orthophoto is then displayed to the851

user. If the geo information is included in the metadata file, the user’s GPS852

location is indicated on top of the image (2). This helps the user navigate853

through the field. The displayed image can be zoomed up to a level where the854

individual pixels are visible. If the user clicks on any location in the image,855

the annotation settings on the right appear. The user can select the type of856

flower from the list (3). Next to each flower in the list, the number of already857

recorded occurrences are indicated in brackets. If necessary, the position of an858

annotation can be fine tuned by using the four buttons on the bottom (4). The859

user can dismiss the annotation in processing by clicking on ’cancel/delete’ (5)860

or save it by clicking on ’save’ (6). Optionally, instead of a point annotation, a861

polygon can be drawn around a region. To do so, the switch at the bottom (7)862
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Figure 9: Screenshot of the main window of the FieldAnnotator application for
Android.

has to be activated. Already saved annotations can also be edited or deleted863

again by simply clicking on them inside the image. By clicking on the menu864

button on the upper left, the settings screen can be opened. There the user can865

edit the list of flowers either manually or by importing a predefined list from a866

csv file. Also an export of the flower list to a csv file is possible. Furthermore,867

some zoom settings such as the maximal zoom level or the zoom level at which868

the annotations should be displayed to the user can be set. The application869

continuously saves the annotations to a json file in the project folder. The870

application is programmed in Kotlin.871
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