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Abstract—User-centric (UC) distributed massive multiple-
input multiple-output (D-mMIMOQO), commonly called cell-free
mMIMO, is an important technology to ensure a more uniform
coverage as well as higher spectral and energy efficiencies in next
generation communication systems. This paper investigates the
performance of UC D-mMIMO systems enabled by a swarm
of unmanned aerial vehicles (UAVs). Specifically, it presents
a comprehensive study on UAVs’ deployment and trajectory
optimization as aerial transmission and reception points (TRPs)
of D-mMIMO systems, considering systems composed solely of
aerial TRPs and those formed combining aerial and terrestrial
TRPs. Moreover, user equipment (UE) mobility is modeled
using a discrete-time Markov chain, and a novel approach to
heuristically optimize the positions of aerial TRPs is proposed,
one that considers the continuous movement of UEs in the cov-
erage area. The proposed approach optimizes each UAV’s three-
dimensional location under a time discretization framework,
with the positioning of the UAVs being adjusted periodically,
allowing for iterative trajectory optimization to improve the
UEs’ spectral efficiency (SE) performance. Simulation results
reveal that the proposed UAV trajectory optimization allows for
significant SE improvement, especially for a low UE density
scenario. Specifically, comparing the proposed method with a
fixed position setup, up to 47.84% increase on average SE is
achieved.

Index Terms—Aerial TRPs, cell-free massive MIMO networks,
computational complexity, deployment and trajectory optimiza-
tion, user-centric approach, unmanned aerial vehicles.

I. INTRODUCTION

User-centric (UC) distributed massive multiple-input
multiple-output (D-mMIMO) networks, also called cell-
free (CF)-mMIMO networks, are envisioned as promising
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technologies for next-generation wireless networks. In
D-mMIMO systems, many transmission and reception points
(TRPs) are spread out in the coverage area, each equipped
with one or more antennas [1], [2]. The users’ equipment
(UEs) share the same time-frequency resources, and each
UE is served by a specific subset of TRPs defined by
their needs and requirements, giving rise to UC concept.
These networks stand out for their high spectral efficiency
(SE), reduced susceptibility to blocking and shadowing, and
uniform performance among UEs [3], [4].

Along with these advantages, new challenges also arise.
Problems related to power control, signal precoding, resource
allocation, decoding strategies, and interference management
are critical issues. Furthermore, to achieve a scalable and
efficient D-mMIMO system, the complexity and resource re-
quirements for each TRP must remain finite when the number
of UEs tends to infinity [5]-[7].

Nevertheless, deploying a terrestrial infrastructure might
be neither cost-effective nor feasible in practical cases, such
as complex terrains, private areas, or remote areas. Also, in
some occasions, terrestrial wireless networks may be disrupted
or not be available due to natural disasters, power outages,
maintenance, and other factors. In those situations, aerial
communication systems based on unmanned aerial vehicles
(UAVs) are regarded as a promising new paradigm to facil-
itate fast and highly flexible deployment of communication
infrastructure due to their high maneuverability [2], [8]. UAVs
can be regarded as a reusable aircraft designed to operate
without onboard people, which can be controlled remotely or
programmed to fly autonomously [9].

For each UAV, there are physical constraints on weight,
size, and energy consumption, that limit the amount of onboard
equipment to be carried, including the number of TRP anten-
nas. Nonetheless, the gains of employing a large number of
antennas can still be achieved by the UAVs cooperation as the
TRPs of a UC D-mMIMO system, even with a small number
of antennas per TRP. In this case, the UAVs operate like a
cooperative swarm that maintains and adjusts their formation
to engage in collaborative missions by sharing their goals and
individual energy and data resources. The UAV swarms can be
particularly useful in scenarios where the wireless network’s
dynamic nature is taken into account, such as when the UEs’
positions are constantly changing due to their mobility. The
maneuverability of UAVs allows for their positions to be
adjusted according to the current state of the system, and their
trajectories can change along with the movement of UEs.



In this context, implementing a swarm of UAVs working
collaboratively as TRPs for UC D-mMIMO networks needs
to be investigated appropriately, and several operational chal-
lenges are required to be addressed, such as data transmission
in areas where a traditional network is not available or unable
to support the demands. Additionally, the horizontal positions,
altitudes, and trajectories of UAVs need to be optimized to
adapt to the continuous movement of UEs.

A. Literature Review

Recently, the integration of UAVs into wireless communi-
cation systems has been proposed to enhance network cover-
age, capacity, and energy efficiency. The case of D-mMIMO
systems enabled by a collaborative UAV swarm has not yet
been fully investigated in detail. In the works that leverage
UAVs and D-mMIMO networks, UAVs primarily serve as
either aerial TRPs (base stations) [10]-[19] or aerial mobile
UEs [20], [21]. In what follows, we provide insights into
the latest works that leverage UAVs as TRPs of D-mMIMO
communication networks, pointing out their strengths and
weaknesses.

In [10], it was introduced a framework for radio-frequency
energy harvesting that combines D-mMIMO, UAVs, and re-
configurable intelligent surfaces. Such an innovative approach
aims to provide a seamless energy source to remote Internet
of Things (IoT) devices, reducing the required infrastructure
of a high-density IoT network. However, it is noteworthy that
the framework primarily emphasizes energy harvesting, with
SE as a secondary objective. This approach makes sense given
that IoT devices generally require low bandwidth. Moreover,
the work lacks optimization for positions and trajectories of
UAVs.

In [11], the authors proposed the utilization of high-
amplitude platforms (HAPs) as a central processing unit (CPU)
to aggregate signals from UAVs through Terahertz wireless
fronthaul links. The study provided a promising deployment
scheme to increase the UEs’ rates. However, it lacked op-
timization of UAVs’ positions and heights, focusing on the
power optimization aspects of the system. In contrast, [12] did
not focus on HAPs, but it optimized the altitude and horizontal
coordinates of UAVs to maximize the UEs’ downlink (DL)
rates. Despite this, the latter study overlooked factors such as
UEs mobility, trajectory optimization, and the possible varia-
tion of each UAV’s height. In addition, it assumed the Rayleigh
fading model, with the effect of line-of-sight (LoS) and non-
line-of-sight (NLoS) propagation used only to calculate the
average channel gain. Lastly, it only analyzed the performance
of conjugate beamforming, also called maximum ratio (MR)
precoding.

In [13], an investigation of uplink (UL) communication in
D-mMIMO networks utilizing UAVs as flying base stations
was performed. The study primarily focused on an algo-
rithmic approach based on asymptotic signal-to-interference-
plus-noise ratio (SINR) expressions for a high number of
UEs to perform a deployment optimization that maximizes
the UEs’ UL rates. In [14], the impact of the imperfect
wireless fronthaul link between UAVs and CPU was taken into

account to evaluate the system’s SE, allowing a more robust
deployment optimization. A deeper look at possible UAV
deployment strategies for D-mMIMO was presented in [15].
Despite this, [13]-[15] neglected UEs mobility and trajectory
optimization.

Furthermore, [16] proposed a hybrid system alternating
between UAV swarms and satellites, focusing on radio re-
source allocation. However, the assumption of an arbitrarily
given UAV trajectory limits the applicability of the proposed
solution. This was addressed by the study in [17], which
proposed a trajectory optimization for the same scenario.
However, both works relied on scenarios that leverage hybrid
UAV and satellite systems to provide service for remote IoT
devices. Therefore, they did not tackle the issue of trajectory
optimization considering the UEs mobility.

In [18], the deployment of UAVs in areas without terrestrial
infrastructure was explored, extending wireless resources to
numerous service providers. However, the scenario in the
work was a conventional cellular network instead of a UC
D-mMIMO system. Moreover, the term “cell-free” that tradi-
tionally is used for UC D-mMIMO was actually used to refer
to an area without cell-based internet access. Similarly, another
work with the denomination “cell-free” without connection to
UC D-mMIMO systems was presented in [19], where each
UE was served by one UAV and had exclusive time-frequency
resources.

Finally, in [20], [21], it was assumed that UAVs are the mo-
bile UEs of the UC D-mMIMO system. In [20], power control
and security aspects were investigated, while [21] evaluated
whether the system can support UAV communications in the
presence of interfering ground UEs. Although their proposals
are an interesting line of research, they follow a different
investigation scenario than our work.

In summary, while the integration of UAVs into D-mMIMO
communication systems shows immense promise for enhanc-
ing wireless networks, current research often neglects crucial
aspects such as UEs mobility, trajectory optimization, and
heterogeneous deployment scenarios. Addressing these limi-
tations is essential for realizing the full potential of UAV-
enabled D-mMIMO communication systems in future wireless
networks.

B. Contributions

By filling out some gaps that exist in the literature, the
primary objective of this paper is to formulate strategies
for deployment and trajectory optimization of UAVs within
the context of UC D-mMIMO networks, where a swarm of
UAVs cooperatively serve the UEs as aerial TRPs. This paper
analyzes not only UC D-mMIMO systems consisting exclu-
sively of aerial TRPs carried out by UAVs, but also a setup
with mixed of terrestrial and aerial TRPs. The UEs mobility
across the coverage area is modeled, and the optimization
of the UAVs’ trajectories is accomplished by dynamically
adjusting the UAVs’ positions while the UEs’ positions change
with time. Additionally, the proposed algorithm uses the DL
SE as a metric that links the UAVs’ positions with the
UEs’ performances. This paper also leverages closed-form



expression for MR precoding to compute SE, thus requiring
only slow-time varying statistical information and simplifying
the optimization process. To the best of the authors’ knowl-
edge, this is the first paper which proposes an approach to
heuristically optimize the positions and trajectories of aerial
TRPs in UC D-mMIMO networks, taking into account the
constant UEs’ movement in the coverage area. Overall, the
main contributions of this paper can be summarized as:

e« UC D-mMIMO systems enabled by a swarm of UAVs
are analyzed. Specifically, this paper models the DL
SE assuming Rician fading, which takes into account
the effect of LoS and NLoS propagation. Additionally,
the modeling for computational complexity (CC), power
consumption, and energy efficiency (EE) in such systems
are presented, assuming the relevant parameters related
to UAV communication systems.

o A new method for optimizing the trajectory of UAVs has
been proposed. This method optimizes the horizontal and
vertical locations of each UAV. Additionally, the paper
proposes a model for UEs mobility using a discrete-time
Markov chain. The proposed trajectory optimization takes
into account the constantly changing positions of UEs. By
utilizing a time discretization framework, the positioning
of UAVs can be adjusted at each time frame, allowing
for iterative optimization of the UAVs’ trajectories.

« Besides the scenarios consisting exclusive of aerial TRPs
carried by UAVs, this paper evaluates hybrid scenarios
integrating both aerial and terrestrial TRPs to address
challenges associated with high UE density traffic and
data rate demands.

o Four precoding strategies are analyzed in terms of SE:
MR, local partial MMSE (LP-MMSE), partial regularized
zero-forcing (P-RZF), and partial MMSE (P-MMSE).
The first two are implemented in a distributed fashion,
and the two latter in a centralized fashion. The results
show that the proposed algorithm is able to adjust the
UAVSs’ positions with precoding schemes other than MR,
even though it is based on simpler MR closed-form
expressions for SE.

e The impact of the number of UEs and aerial TRPs
on the proposed method’s achievable gains is analyzed
for different signal processing alternatives. Simulation
results reveal that the proposed solution allows for SE
improvement of 29.76% for MR, 47.84% for LP-MMSE,
38.14% for P-RZF, and 35.24% for P-MMSE, compared
to the case each UAV chooses a random initial position
and stay fixed while only UEs move.

C. Paper Outline and Notations

The remainder of this paper is organized as follows. Sec-
tion II presents the system model, including the channel mod-
eling and estimation procedure, the DL SE, and the CC to
perform signal processing. SectionIII presents the modeling
of power consumption and EE. SectionIV introduces the pro-
posed approach to optimize the trajectories of UAVs. Section V
plots illustrative numerical results and draws insightful dis-
cussions to reveal the effectiveness of the proposed approach.
Finally, Section VI concludes the paper.
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Fig. 1. UC D-mMIMO system enabled by a swarm of UAVs as aerial TRPs.
(a) Only aerial TRPs. (b) Terrestrial and aerial TRPs.

Notation: Boldface lowercase and uppercase letters denote
column vectors and matrices, respectively, the superscript
(.)H denotes the conjugate-transpose operation, the N x N
identity matrix is Iy, and the cardinality of the set A is
represented by |.4]|. The trace, euclidean norm, and expectation
operators are denoted as tr(.), ||.|, and E{.}, respectively.
The floor, ceiling, and modulus operators are denoted as | . |,
[.7, and %, respectively. The notation N (u,0?) stands
for a complex Gaussian random variable with mean p and
variance 2. U[a, b] denotes a uniform random variable on the
interval [a,b], and F(z,02,a) ~ TN(z,0% 2 — a,z + a)
stands for a truncated normal distribution function in the
interval [z — a, x + a] with mean value centered at = degrees
and variance o2. Moreover, P (X = z|Y = y) denotes the
conditional probability of X = z given Y = y, where X
and Y are random variables.

II. SYSTEM MODEL

We consider a UC D-mMIMO network composed of L
TRPs and K single-antenna UEs. Each TRP is equipped with
N antennas, and the total number of antennas considering
all TRPs is M = NL, where M > K. The aerial TRPs
are deployed at UAVs, and they connect to the CPU through
dedicated wireless fronthaul links, as illustrated in Fig. la.
In the hybrid D-mMIMO system, terrestrial and aerial TRP
are deployed, as depicted in Fig. 1b. By denoting the number
of terrestrial TRPs as L; and the number of aerial TRPs as
L., the total number of TRPs is defined as L = L; + L,.
Additionally, each UE is served by a subset of TRPs. The
system operates on time-division duplex (TDD) mode, and it is
assumed reciprocity for the UL and DL channels. The channel
vector hy; € CV*! between the TRP [ and UE k undergoes an
independent correlated Rician fading, being defined as [21]-
[24]
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where hy; € CN*! corresponds to the deterministic LoS
component and hy; ~ Nc(On,Ry;) € CV*1 is the small-
scale fading random component from NLoS propagation with
covariance matrix Ry, = E{hklh L} € CVXN | gy denotes
the Rician factor, and fy; is the large-scale fading, including
path loss and shadowing. Due to the UEs mobility, random
phase shifts ¢; ~ U[0,27) occur in the LoS component,
which is assumed to be unknown. Assuming TRPs equipped
with a half-wavelength-spacing uniform linear array (ULA),
h};fs _ [1, L ’efj(Nfl)ﬂ' sin(pw1) Cos(@kl)]T c CNx1 , where
k1 denotes the azimuth angle and 6j; denotes the elevation
angle of the LoS component.

The Rician factor ry; represents the power ratio be-
tween the LoS and NLoS components. For LoS propaga-
tion links, the Rician factor can be modeled as ki =
min{101.3—0.003d”€’pLOS/(l — pLoS)} [21], [24], where d;y, is
the between TRP [ and UE £k, pros is the LoS propagation
probability. For aerial TRPs, pr g is a function of the elevation
angle 6y, given by [25]

1
T aep (b [ )’

where a and b are determined according to the environment.
The large-scale fading fy; is modeled as [25]

Bri[dB] = —201og (@) _ {

where the first term denotes the free-space path loss, which is
a function of the distance dj; between UE k and TRP [, the
carrier frequency f., and the speed of light c. The variables
n™°S and nN'°S stand for the additional losses that differ
according to the environment, and the presence or absence
of the LoS component.

2

PlLos =

n™S for LoS link

3
NS for NLoS link ’ @)

A. Uplink Training and Channel Estimation

Each coherence block comprises 7. samples, where 7,
samples are dedicated for UL pilot signals and 7,4 for DL data.
In the UL training phase, the UEs send pilot sequences of 7,,-
length to the TRPs. Then, the UL channels are estimated using
phase-unaware linear minimum mean square error (LMMSE)
estimation. The pilot signals are orthogonal to each other,
and a pilot ?; can be reused by some UEs if K > 7,. Let
Pr C {1,...,K} denote the subset of the UEs assigned to
the pilot ¢, including the UE k. The received pilot signal at
TRP [ can be expressed as [7]

Z \ TpTli h; + ng,, €]

1€P

pilot __
ytkl

where n;,; ~ N¢ (0,02 Iy) denotes the noise and 7; is
the power that the UE ¢ transmits in the UL direction. The
LMMSE channel estimate is given by

hy = /T sz‘I’tﬁygillOt, )

— —H ~
where Ry, = E{hklhkl = (hklhjl j_HRkQ and ‘Ijtkl =
E{(vir 000" = Tiep, mp(Bahy + Ra) + oL,

B. Downlink Data Transmission

In UC systems, each UE is associated with a subset of TRPs
called TRP cluster, represented by M; C {1,...,L}. The
connections between the UE k£ and TRPs are denoted by a
diagonal matrix Dy; € N¥*V being defined as

Iy ifle M,
D, = 6
M {ON if 1 ¢ M. ©

The subset of UEs served by a TRP is denoted by D; C
{1,...,K}. In this work, the number of UEs that each TRP
can serve (K; = |D;|) and the number of TRPs connected
to each UE (L, = |My|) are limited, such that K; < 7,
and Lp < Chax. This is performed in order to comply
with the scalability requirements and to reduce the processing
complexity from the network [5], [26], [27]. Let s € C denote
the symbol intended for the UE k. The DL received signal at
the UE k can be given by

K L
yk = thszquSk-f— Z Z hlezlwzlsz + nk , (D
—— N’

=1 Desired signal i=1,i#k I=1 Interfering signals Nome

where x; = Zk:l Dy ;wysi represents the data signal sent
by the TRP [, wy; denotes the precoding vector, and ng ~
Nc (0,03)) is the receiver noise. The terms s, and wy, satisfy
]E{HS;CHQ} =1 and E{HWMHQ} = pii, With py; being the
power allocated to the UE k regarding the TRP [. The DL
power of each TRP is restricted to p;, such that > ke, Pkl <
pi. From (7), an achievable DL SE can be computed as [5]

SE; = 2 log, (1 + SINRy) )
Te
where SINRj, denotes the DL SINR, which is given by
B {nifDuwe )|

SINRy = e
5> E{IhDiwi |} — [E{hfDewe} + o3,
i=1

)

where wi, € CM*! and h, € CM*! are, respectively,
the collective vectors of wy; and hy;. For instance, w; =

[wgl,...,ng]T for I € {l,---,L}. Moreover, D, =
diag (Dg1, ..., Dpr) € NMXM gtands for the diagonal block

matrix. In (9), all expectations are related to the channel small-
scale fading realizations [7]. Note that (8) and (9) represent
the widely known hardening bound, which is a capacity lower
bound valid for any choice of precoding vectors [5]. Unfortu-
nately, the SINR does not have a closed-form expression when
using P-MMSE, P-RZF, and LP-MMSE precoding schemes.
However, it is still possible to compute the SINR through
Monte-Carlo simulations.

C. Signal Processing Computational Complexity

In the centralized implementation, the CPUs perform chan-
nel estimation and combining/precoding computation [5]. In
the distributed one, the TRPs perform these tasks locally, and



the CPUs encode the DL data signals. The CC for combining
and precoding-related operations is calculated as in [7], [28],
accounting for the sum of the number of complex operations
(multiplications and divisions) required in each coherence
block.

For distributed MR precoding, the number of complex
operations for each TRP [ is given

CMR = (N7p + N?) Dy, (10)

which represents only LMMSE channel estimation procedure.
For distributed LP-MMSE, it becomes

- 1

CPPMMSE — (N7, + N?) |Dy| + §(N2 + N)|Dy|
an

1

+N2?|Dy| + g(N3 — N)+N,

which accounts for LMMSE channel estimation, matrix inver-
sion and product. It can be noticed that the CC is a function of
the number of UEs served by each TRP (|D;]) in the distributed
implementation.

In the centralized precoding schemes, the number of com-
plex operations depends on the number of TRPs serving
each UE (|My]) and the number of UEs that are served
by partially the same TRPs as the UE k, denoted as S =
{i : DyD; # 0 nx N }. For P-MMSE precoding, there are
tasks of different TRPs performed only once for each UE.
The common TRPs that serve UE k and 7 € Sy, is denoted by
the set By = Ujecs,M,. Then, the total number of complex
operations is given by

K

CPmMMEE - ;{(Nm + N?) |B| + % ((N|Bk])® + N|Byl)
12)
+ (N|Mg])? + % (N|M])® = NIM|) + N\Mk\}‘

For P-RZF, the total number of complex operations is given
by
P_RZF _ 2 1 2
c :;{(NTP-&-N )led+ 5 (Icl +\cl\)N} n
K
+Z{\5k|2 + N|My||Sk| + % (1SkI? = ISkl) + \Skl}-,
k=1

where C; = UreMuen, D, denotes the set of common UEs
that are served by TRP [ and I’ € Myep,. The subset C
is defined since there are common tasks regarding different
UEs that are performed only once for each TRP [, such as the
LMMSE channel estimation.

In terms of hardware computational complexity, the number
of complex operations can be converted to giga operations per
second (GOPS) required by the TRPs and CPU. This leads
to the multiplicative factor f = 8NDFT(TCT5)_1 x 1079 for
conversion from the number of complex operations to GOPS.
The number of GOPS required by the TRPs is given by [29]

GOPS, = If {Clest/comb + Clcal/prec} + C[DFT + CZBBF7 (14)

where I € {0,1} is a binary variable that indicates if central-
ized (I = 0) or distributed (I = 1) processing is used. In the

st/comt — . .
first term, C;” /eomb o {OMR CLP=MMSEL gince only dis-
cal/prec

tributed processing is performed in the TRPs, and C, =

N|Dy|(1 + 74) represents the number of complex multiplica-
tions required to perform reciprocity calibration and precoding
application. The terms C’lDFT = 8N Nprr logy(Nppr)/Ts10°
and CPBY = 40N f,/10° are the required GOPS for the
discrete Fourier transform (DFT) and the baseband filter [30],
[31], respectively.

The required GOPS for the CPU is given by [29]

GOPScpy = (1 _ I)f {Cest/comb + Ccal/prec} + C%%][ejr, 15)

where Cest/comb ¢ [OP-MMSE OP—RZFY gince only cen-
tralized precoding are performed at the CPU, Cl/prec —
ZzL:1 N|Dy|(1 + 74) accounts for reciprocity calibration and
precoding application, and C’g%‘%r denotes the CC in GOPS the
CPU demands to perform other operations that are common
for centralized and distributed processing, given by [32]

caber = (B/By)! (SE/SE) " Crix + (LN)P K2 Gy
—+ (B/Bb)l (@/SEb) ! K! Cche

+(B/By)* (SE/SE,)"° K* Cuip + (B/By)' K Corpwm,

16)

where Chin, Chrc, Ccne, Cvp, Corpm are the base GOPS
for higher-layer network (HLN), higher-layer control (HLC),
channel coding, layer mapping and demapping, and orthogo-
nal frequency-division multiplexing (OFDM) modulation and
demodulation, respectively.

III. POWER CONSUMPTION AND ENERGY EFFICIENCY
MODELING

The total power consumption can be formulated as

L

Py = Z {P, + Pm, + APyav,;} + Pcru,
=1

a7

where P, is the power consumed by each TRP for data
transmission, P, ; is the power that the fronthaul link con-
necting the CPU and TRP [ consumes, and Pcpy is the power
required by the CPU to perform the signal processing tasks.
Additionally, Pyay,; represents the power required for a UAV
to fly to a location and hover at a fixed point, and A; € {0,1}
is a binary variable that indicates if the TRP [ is terrestrial
(A; = 0) or aerial (4; = 1).

The total EE in bit/Joule, is computed as the ratio between
the sum throughput in bit/s and the total power consumed in
Watts (W) [33], [34]. It can be written as

(18)

where B is the bandwidth.

A. Power Consumption of each TRP

The power consumed by each UAV, including data transmis-
sion, effects of amplifier and circuit of the analog front-end,

is modeled as
1
Pi=E{al’} + NP+ Poc,  19)

where 0 < 7 < 1 denotes the efficiency of the power
amplifier, and P,.; is the power required of each antenna



of the TRP [ to run internal components, such as converters
and filters, Pcc; is the power required to perform the signal
processing tasks at the TRPs, given by
caG >
)

CCpax

Pocy = PRy + AP ( (20)

where P/(°° denotes the power consumed by each digital sig-
nal processor (DSP) of TRP [ in idle mode, AR}, represents

the slope of power consumption due to processing, and CC]
indicates the maximum GOPS capacity of the DSP.

B. UAV Propulsion Power Consumption

It is assumed that each UAV flies to the target deployment
point, hovers during the service time, and returns to the initial
point. Depending on the type of flight, the propulsion power
of the UAV is PUAV,Z = th,l if it hovers or PUAV,l = Pcv,l
if the UAV is flying.

The power required for a UAV to hover is given by [35]

(mtotg)3/2
n2rps

where myo is the total mass of each UAV, including the
battery and TRP components, g is the gravity acceleration, p is
the air density, 1 denotes the battery and motor power transfer
efficiency. Moreover, r represents the number of rotors for a
rotocopter drone, and ¢ stands for the area of the spinning
blade disc of one rotor.

The power required for the UAV [ to fly at a constant air
velocity v; in m/s is given by [36]

P = (21)

P — T (v sina + Uind,l)7
Ui
where T = W + D = myug + %pC’DAvlz, and o =
tan™! (£). Cp and A are the drone’s drag coefficient and
projected area, respectively. The induced velocity v;,q,; can be
numerically computed by

(22)

Mot g

2rp<\/ (vicosa)® + (v sina + vina)?

Vind,l = (23)

C. Fronthaul Traffic Rate and Power Consumption

The rate in the fronthaul links is also different depending
on the type of network implementation, i.e., centralized and
distributed processing. For distributed processing, the rate
scales with the number of UEs served by the TRP, while in
the centralized implementation, it scales with the number of
antennas in the TRP. The fronthaul traffic is modeled as [37]

d d d7d » Tp
R =2B | I — E b, +(1—I)N | b)) — + b, — s 24
fth,l ( kl ( ) (l lr)) 24

c kED, c c

where b¢, is the number of quantization bits per sample of
each UE used for data transmissions in the distributed imple-
mentation, and bfl and b} are the quantization bits per sample
used for data and pilot signals in each TRP, respectively, in
the centralized implementation.

The power that the fronthaul link consumes is modeled as

Py = Pog + Proy Ren i, (25)

where Fp; is a fixed power consumption of each fronthaul
(traffic-independent power), which may depend on the dis-
tances between the TRPs and the CPU and the system topol-
ogy, P is the traffic-dependent power (in Watt per bit/s), and
Rp,; the rate in each fronthaul link, that is different depending
on the type of network implementation, i.e., centralized and
distributed processing.

D. CPU Power Consumption

The power consumed by the CPU can be expressed as

Pcru = Phxed +

(ngppgr;;p + APTSC CCCPU> , (26)

GPP
cool chg)lé

where Pryoq represents the fixed power consumption of each
CPU, 0 < 0¢o0o1 < 1 denotes the cooling efficiency, Ngpp =
[CCopy/CCERY] is the number of active general purpose
processors (GPPs), PESE , is the idle power consumption,
A% pp stands for the slope of power consumption, and CCZ3%
is the maximum processing capacity in GOPS.

IV. UAV TRAJECTORY OPTIMIZATION

This section introduces the algorithms to model the UEs
mobility and to optimize the trajectory of the UAVs. Recall
that in the context of UC D-mMIMO networks, UAVs act
as mobile TRPs, and thus, their positioning in the coverage
area is intrinsically associated with the system performance.
Therefore, the decision process to update the positions of
UAVs can be based on network performance metrics, such
as SE and EE, as computed in (8) and (18). However, such
metrics can change frequently in wireless channels due to
channel fading and UEs mobility.

An alternative solution involves using a discretization
framework, where the positioning of UAVs can be adjusted
in each time frame, in conjunction with the large-scale fading
coefficients, which remain unchanged for many coherency
blocks. This consideration allows the calculation of a tractable
ergodic UEs SE metric using only large-scale channel state
information (CSI). The SE is calculated on a given disposition
of UEs and TRPs in each time frame. For the MR precoding,
the closed-form expressions for SE can be computed as [38]
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where Q; = Riz‘I’t:llRiz, pii = pa/tr(mimpQa), Ly =
Hklﬁg, and P, € {0,1} is a binary variable that indicates
if different UEs share the same pilot sequence, that is, P, =
1 if ¢ € Py, and Py, = 0 if i ¢ Py. Moreover, (27) represents
the desired signal power, and (28) is the interference signals
power. One can observe that using more complex precoding
schemes with superior interference cancellation capabilities,
such as P-MMSE and LP-MMSE, do not allow for SE
computation based on large-scale gains, as there are no closed-
form equations available for non-MR linear precoding. Despite
this limitation, the network can be optimized to MR while
operating with any type of precoding. Although this strategy
does not yield globally optimized performance, it balances
optimization complexity and overall system performance.

The flowchart depicted in Fig.2 provides an overview of
the approach employed in this paper to update the UAVs’
positioning. Initially, all UAVs are placed in arbitrary po-
sitions, e.g., random or evenly spaced, and then ergodic
metrics based on long-term statistics are evaluated. If a target
SE is not achieved, the new candidate UAVs’ positions are
calculated based on long-term metrics, the positions that leads
to the highest performance metric are selected, as detailed in
Subsection IV-B. Then, the coordinated trajectories of UAVs
are computed in order to avoid collisions when UAVs move.
The UAVs’ positions will be updated until a target SE is
achieved, otherwise, their positions will be fixed.

In this paper, ng setups account for different UEs and UAVs
initial positions. Over n, episodes, UEs’ positions change ac-
cording to their mobility behaviors, while the UAVs’ positions
may either remain static or be dynamically optimized by the
proposed algorithm. If optimization occurs, each episode is
subdivided into n; iterations. During these iterations, UAVs
may adjust their positions in search of the optimal location
iteratively, whereas UEs maintain their positions. At the end of
all iterations inside an episode, UAVs assume positions where
maximum SE performance was obtained to have the best next
episode initial position. This process is then replicated across
all setups to compile the statistical numerical results of this
paper. The following subsections detail the proposed models
for UEs mobility and UAVs position adjustment, respectively.

- =

Fig. 2. Flowchart outlining the process for determining whether or not to
update the positions of UAVs.

A. UEs Mobility Modeling

It is considered that UEs are deployed randomly in the
streets of an urban scenario with multiple buildings. The UEs
may move in different directions as long they remain inside
the coverage area and streets. For simplification, it is assumed

that each UE can move at angles, given in degrees, denoted
by ¢k c A¢’ where A¢ — {d)min,d)min 4 ¢stcp’ '“’d)max} —
{ai, a2+, a4, }. Moreover, it is important to note that
@™ > 0 is the minimum direction angle, 0 < ¢***P < 360
is the step between considered angles, and ¢™** < 360 is the
maximum direction angle.

A discrete-time Markov chain with |A4| + 1 states is used
to model the mobility of each UE, as shown in Fig.3. The
additional state concerning the number of possible movement
directions exists to model stationary positioning behavior.
Under this model, it is established a probability transition
matrix P = [p;;], with ¢ € {1,---,|A4| + 1} and j €
{1,--+,|Ag| + 1}. In this context, p;; is the probability
of a stationary UE to continue in this condition, which is
given by ps. Conversely, py; for all i € {2,---,|dx| + 1}
represents the probability of a UE initiating movement in
any direction, being calculated as (1 — py)/|Ag|, implying an
equal probability of moving in any direction. Furthermore, p; 1
for all i € {2,---,|Ay| + 1}, indicates the probability of a
moving UE coming to a halt, which is given by pj.

Fig. 3. UEs moving directions modeled by a discrete-time Markov chain,
where the UEs moving directions depend on their previous direction of
movement. The UEs positions are a function of their speeds, current moving
directions, and previous positions.

The probabilities p; ; for ¢ # 1 and j # 1 are hard to calcu-
late. UEs in motion are expected to have specific destinations,
leading to a generally consistent direction of movement with
only minor angle adjustments, except for sudden and more
significant changes at locations, like intersections or possible
backtracking. These considerations imply that the probability
of UEs maintaining a similar direction of movement is very
high, while the likelihood of adopting an opposite direction is
very low. To model this behavior, the movement direction of a
UE in episode n, where n > 1, if it does not come to a halt, is
given by a random variable ¢>§C”) ~ .7:(¢>§Cn71), 04, 180)%360,
where % stands for the modulus operator, F(z,0?,180) ~
TN (x,0% ¢ — 180,z + 180) stands for a truncated normal
distribution function, o4 is a variance that models the UEs
commitment to maintain a similar direction of movement.
Under this distribution, the probability p; ; fori # 1 and j # 1
is given by

pij = (1 *Ph)P( Egn) = aj|¢1(€n_1) = ai) .29

Finally, the UEs positions in the two-dimensional Cartesian



space in episode n are modeled as

:v,g) (")A cos (wqb(”)/180)
y,(cn) = vk JA,, sin (W¢kn)/180)

where A, is the time step between episodes. It is worth noting
that the boundaries of the buildings and coverage area serve
as obstacles. Hence, whenever a UE approaches them, it can
only move away in the opposite direction. Moreover, in each
episode, the UEs move at different speeds uE) to a maximum
value vyax, which is randomly defined as v, )~ U[0, max]
for each UE k.

(n 1)

Yk G0)
Yk

B. 3D Trajectory of UAVs

This subsection presents the steps to adjust the UAVs’
positions. An iterative method is designed with the goal of
improving UEs’ SE performance. The algorithm works by
defining the total number of iterations it has available to
operate while the UEs are assumed to be in a stationary
position. For that purpose, the number of iterations is defined
as the ratio between the UAVs and UEs maximum velocities,
ie.,n; =maxjeq,.. ry(v1)/ maxpeqa,.. k) (vx), where v; and
vy are the velocities of UAV [ and UE k, respectively. The
impact of UAVs positions on the UEs’ performance can be
computed based on long-term CSI. Specifically, for any com-
bination of UEs and UAVs locations, the SE of the UEs can
be obtained replacing (27) and (28) in (9) and (8). Although
these equations are specific for MR precoding, they are still
useful to provide a good estimate of the UEs’ performance
even if another precoding technique is later performed.

The first step of the algorithm is to define a set of UAVs
chosen to update their positions in the current episode. This is
performed based on the average SE obtained at the start of a
new episode. Specifically, the set Mpmin C {1,..., L} defines
the UAVs that serve the UE with the worst SE performance,
where k™" = arg miny SE;. It is important to note that only
a subset of UAVs update their positions in each episode due
to the limited number of iterations (n;) available.

In the next step of the algorithm, the total number of
iterations is divided by the number of UAVs in the set
;YA = 1;/| M;min|). The goal of this step is that each UAV
adjusts its position individually, guaranteeing the SE is not
affected by the movements of other UAVs. At each iteration,
the UAV defines its moving direction 51(” = {0, 65%P, ..., 360}
(in degrees), the UAV [ position in the two-dimensional
Cartesian space is modeled as

wl(l = A cos (7r6(i /180) +
yl(z) = v A; sin (m 50)/180)

where A; is the time step between iteration.

The UAVs included in the set Mmin take turns adjusting
their positions one at a time, where each one has n; VAV
iterations available. The selected UAV begins by moving in a
random direction, drawn from a uniform discrete distribution
U[0,360]. Subsequently, it computes the SE improvement or
reduction related to this movement, computed as

i 1 K 3 i—
SEh = 2= 2 (SE —sE{).

k=1

(ifl)

(i by, GD

(32)

In the next iteration, the movement direction of the UAV is
determined based on the result of the previous action. If the
previous direction led to an increase in SE, the UAV is likely
to move in a similar direction. Conversely, if the previous
direction resulted in a decrease in SE, the UAV is more likely
to move in the opposite direction. In both cases, the next
direction is chosen randomly from a normal distribution with
a mean equal to the previous direction (or its opposite) and a
variance calculated based on the SE improvement (or decrease)
of the previous action. However, if there is no SE improvement
or decrease, the UAV moves in a uniformly random direction.
Therefore, the UAV [ movement direction at iteration 7 is
modeled as

u[0,360] it SE(z" =0ori=1,
o) ~ [f((s,“*”,ag"*”, 180)] %360 if SEz" >0, (33)
[FY,0i70,180)] %360 if SE{i" < 0,
where % stands for the modulus operator, 5l(i_1) = (180 +

6;“1)) % 360 is the opposite angle of (5;“1), F(z,0%,180) ~
TN (x,0% 2 — 180, 2 + 180) stands for a truncated normal
distribution function with mean value centered at x degrees
and variance o2. The variance parameter is computed based
on the SE improvement (or reduction) as

. 1
(=1 — min o 7 | > (34)
SEdi

max

where 0§ is a project parameter. At the end of the iterations,
UAV [ adjusts its position to the iteration that led to the
highest SE performance, i.e., i* = arg max; Zszl SE,(;). The
algorithm concludes once all UAVs adjust their positions.
Algorithm 1 summarizes the heuristic method proposed to
adjust the UAVs positions.
Furthermore, UAVs heights z;
optimized in each iteration, where z,;, < zl(l) < Zmax. In this
case, a fraction of the iterations allocated for each selected
UAV is used to adjust its height while its two-dimensional
position remains the same, i.e., [xl(i) = xl(z_l), yl( R Z(Z 1)]
For that purpose, a modified version of Algorithm 1 is used,
considering that each UAV moves upwards or downwards in

a given iteration, represented as zl( () /a) € {—1,1}. Addition-
ally, the UAV [ height is modeled as z( R [VWAY, zl( ()u/d) +

zl(lfl). Afterward, if the previous action resulted in a SE
increase, it continues to move in that direction. Otherwise, it
goes in the opposite direction. The process may stop before the
end of the assigned iterations if the UAV reaches the minimum
or maximum heights.

Note that only channel statistics are needed to compute
the proposed UAV trajectory optimization in Algorithm 1,
and that it considers imperfect CSI to calculate the UEs’ SE.
Analyzing the proposed algorithm, the time complexity can be
written as O(n; K2|M;|N?3), which is due to the computation
of the UEs’ SE for each iteration. For scalability purposes,
this work assumes that |M;| < Chax, and that the CPU
can compute the SE of only K < Kp.x = LChax UEs,

() can also be dynamically



Algorithm 1: Iterative adjustment method for the
positions of selected UAVs per episode.

Input: Current episode n, number of iterations n;, maximum
variance parameter oy, SEéli;f =0.
// Compute the SE at start of episode n
Compute SE,(f:O) = SE;C") Vk € {1,... K} by solving (27)
and (28) in (9) and (8);
// Select the UAVs that serve the worst UE
2 Set k™™ = arg ming SE;ﬂ");
3 Set Mymin C {1,..., L} as the subset of UAVs that serve
the UE with the worst SE performance;
// Define the number of iteration per UAV
4 Set m; VAV = 0 /| Mmin;
// Update the position iteratively
s for [ =1 to |[Mmin| do

-

6 for i = 1 to n;"V do
7 if i = 1 or SE{; = 0 then
// Move in a random direction
8 Set 6" ~ 1[0, 360];
9 end
10 else if SESBff < 0 then

// Higher probability of moving
in the opposite direction

11 Set opposite angle as
51 = (180 + 67 % 360;
1 set o ~ [F(O[, 071, 180)] % 360;
13 end
14 else

// Higher probability of moving
in similar direction
15 set o ~ [F(o{, 071, 180)] % 360;
16 end
// UAV [ position

mgi) = u A, cos (7r5l(i)/180) + xl(ifl) )

yl(i) = v A sin (7755”/180) + yl(i_l) '
// Compute the current SE
18 Compute SE,(f) Vk € {1,... K} by solving (27) and
(28) in (9) and (8);
// Compute the SE difference
19 Set SE{) = L 3K | (SES) - SE,(ffl));

// Compute variance parameter

20 Set O'L(;i) = min (Uf;“ax );
21 end

// Set the UAV | position at iteration
that leads to the maximum SE increase
2 Set i* = arg max; 25:1 SE,(j) ;
23 Set [z, y1] = [xgi*),yl(i*)
24 end

Output: Updated positions of UAVs: [z, y1] VI € M min

17

1
’ (i)
|SEdiff

| as the value of iteration ¢*;

the proposed UAV trajectory optimization are presented for
scenarios where only aerial TRPs is deployed and also for the
case of both aerial and terrestrial TRPs are used.
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Fig. 4. Considered urban-dense scenario to analyze UC D-mMIMO network
enabled by a swarm of UAVs as TRPs. In scenarios containing terrestrial
TRPs, they are placed atop the building’s edges.

The simulation scenario has a 500m x 500 m square cov-
erage area, with 16 building blocks of 100m square length
and 15m high, as depicted in Fig.4. The grid structure is
common in major cities like Barcelona and New York, making
it a suitable model for urban-dense environments. The UEs
are randomly deployed throughout the streets of the scenario.
For scenarios containing terrestrial TRPs, they are located
at the top of building edges. Initially, the aerial TRPs are
carried by UAVs hovering above the streets at 30 m height.
The UAVs positioning and heights can change by performing
the proposed trajectory optimization method in Algorithm 1,
where the UAVs always flies at heights above the buildings.
To determine the presence of a LoS link between each UE
and TRP, we check whether the buildings in Fig. 4 physically
obstruct the LoS component or not. TableI presents the
remaining simulation parameters.

TABLE I
SYSTEM, CHANNEL, AND SIGNAL SIMULATION PARAMETERS.

corresponding to the number of connections in the network
[26]. Then, the time complexity of the algorithm can be
defined as O(n; K2Cyax N?3), where Ky = min(K, Kpax)-

V. NUMERICAL RESULTS

This section shows illustrative numerical results of the
UC D-mMIMO system enabled by UAVs. The results for

Parameter Value

UEs heights 1.65 m

Aerial and terrestrial TRPs heights 30 m and 16.65 m
Receiver noise figure 7 dB

Coherence interval

UL pilot length

Maximum TRPs per UE
Carrier frequency
Bandwidth

TRP’s total DL power
UE’s total UL power
Angular standard deviations
ULA antenna spacing
Urban environment settings

Continue stationary and come to a
halt probabilities

Time between episodes and itera-
tions

Variances for UEs and UAVs
Number of setups, episodes, and it-
erations

7. = 200 samples
Tp = 10 samples

Cmax =10

fe=3.5GHz
B =100 MHz
p; = 23dBm
Nk = 20dBm

op = 09 = 15°

1/2 wavelength distance
a=9.61,b=0.16, koS =1,
77NLoS =20

ps = 0.15, pp, = 0.3

Ay = 5/Umax: A; = An/ni
oy =5, af;“a" =30

ng = 100, ne = 100, and n; =
100

The maximum number of UEs is based on a high-density

urban area with 10,000 people per km?, 25% of them being



outdoor UEs, and the operator has a contract with one-third
of outdoor UEs. Three UE density scenarios are simulated to
emulate different load behavior. The corresponding number
of UEs according to the coverage area is shown in TableII.
The presented numbers represent low, medium, and high UE
density, which are equivalent to 144, 520, and 800 UEs/km?,
respectively. The number of deployed TRPs depends on the
number of UEs, antennas per TRP, and the expected data
rate of 200 Mbit/s demand per UE using MR precoding. The
procedure to determine the number of deployed TRPs is
resumed by computing the average rate R for a given value of
L, N, and K, using Monte Carlo simulations. The set of TRP
count and achieved rate are stored in sets £ = {Lyin, Lmin +
Lstep, s Lmax} and R = {Ry, Ra, - -+ , Rz}, respectively.
By noting that Ry < Ry < --- < Rjg, it is possible
to interpolate the results to determine any arbitrary L that
leads to an average rate R. To obtain the values at Tablell,
Lyin = K/ Tp and Ly, = 800. Since the results are depicted
in terms of SE throughout this paper, note that 200 Mbit/s per
UE is equivalent to 2 bit/s/Hz with the adoption of 100 MHz
bandwidth.

TABLE II
NUMBER OF DEPLOYED TRPS FOR DIFFERENT UE DENSITY SCENARIOS.

Number deployed of TRPs (L)

UE density  Number of UEs (K)
N=2 N=4
Low 36 84 48
Medium 130 303 167
High 200 491 265

In the distributed implementation, the power coefficients at
TRP [ are determined as pr; = pav/Bri/ Yy e VBr1, Where
pa represents the maximum transmit power per TRP. The
centralized approach adopts scalable fractional power control
with the parameters set to v = —0.5 and k = 0.5 [7].
The EE parameters related to the power consumption of the
hardware of the TRPs, and fronthaul links are summarized
in TableIII, which follows [29], [34]. The DSPs parameters
align with Texas Instruments TMS320C6678, and those for
GPPs are based on dual Intel Xeon Gold 6338N processors.
The remaining parameters used to compute the CC in GOPS
are based conventional 5G new radio (NR) with 30kHz of
subcarrier spacing, where Nppr = 3300, f; = 122.88 MHz,
and Ty = 35.38 us. The parameters used to model the propul-
sion power are set as follows: miot = 0.411 kg, n = 0.7,
r =4, p=1225 kg/mB, ¢ = 0.0176 m2, Cp = 2.49 and
A = 0.0636 m?, and battery capacity of 2.0457 x 10° Joules
[36]. To compute fronthaul rate, the number of quantization
bits per sample for data transmissions in the distributed
implementation and centralized implementation, bgl and b;i,
are computed by incrementing the bit width until an acceptable
SE degradation due to fronthaul data samples is achieved,
which is set as agee = 0.1 bit/s/Hz. Moreover, the achievable
SE assuming quantization of the bits per sample transmitted
over fronthaul links is computed as in [37]. In centralized
implementations, the fronthaul rate is computed by setting
pilot samples bit width as b} = 10.

TABLE III
PARAMETERS ASSUMED FOR CALCULATING THE POWER CONSUMPTION IN
CPUS, BACKHAUL/FRONTHAUL LINKS, AND EE.

Parameter Value Parameter Value

Plpéoc, ng’;’o 73W, 2124 W Py, 0.825W

Af’wc, A‘ér;; 13.64 W, 452.08 W Py ; 0.25W/(Gbit/s)
cepmax 180 GOPS Tcools 1 0.9, 04

CCEES 10777 GOPS Prxed 450 W

A. 3D Trajectory of UAVs

This subsection delves into cases where UAVs are deployed
to provide mobile service coverage when terrestrial infrastruc-
ture is unavailable due to malfunctioning, disasters, or when
it has not been deployed.

Fig.5 depicts the average SE of UEs plotted against the
episode number. This result is derived from various Monte
Carlo independent simulations, with random initial positions
assigned to both TRPs and UEs. The analysis assumes MR
precoding scheme for different UE density scenarios, as out-
lined in TableII. The proposed algorithm for UAVs’ positions
adjustment is compared to the case where their positions
remain fixed. It can be observed that when the UAVs are
stationary, the SE tends to remain constant throughout the
episode steps. This is attributed to the movement of UEs,
which can yield both positive and negative impacts on the
SE. Since the results are an average of different setups, one
effect cancels out the other, leading to a stable average SE. On
the other hand, the average SE monotonically increases with
the episodes when the proposed algorithm is performed. This
demonstrates that UAVs can iteratively adjust their positions
to improve SE within each episode, allowing for dynamic
adaptation to the UEs movement across episodes.

Moreover, the results in Fig. 5 show that the highest increase
in SE of the proposed algorithm are achieved when UE density
is lower. For instance, with 2 antennas per TRP, the average SE
improvement is 23.75% for low UE density, while reaches only
2.44% in high UE density. Nonetheless, the SE improvement
for scenarios with 4 antennas per TRP is slightly better,
reaching 29.76% for low UE density and going to 6.56% in
scenarios of high UE density. These results suggest that the
proposed algorithm yields less SE improvement as more UAVs
are deployed, given that results for 2 antennas are slightly
worse than for 4 antennas. This occurs because only a limited
number of UAVs can modify their positions within each
episode. Consequently, with an increased number of deployed
UAVs, the fraction of them capable of adjusting their positions
reduces, leading to slightly reduced SE improvements.

Fig. 6 presents the average SE of the UEs versus the episode
number for the proposed UAV trajectory optimization when
the number of iterations n; varies. The results assume MR
precoding for low UE density scenario with 4 antennas per
TRP, and evaluate up to 500 episodes. It is observed that
the performance of the proposed method improves with an
increase in the number of iterations. In episode 500, the SE
improvements of the proposed approach compared to the fixed
UAV positions reach 38%, 28.6%, and 10.8% for n; equal to
100, 50, and 10, respectively. It is interesting that even with
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Fig. 5. Average DL SE of UEs per episode for MR precoding at low, medium,
and high UE density scenarios.

the number of iterations as low as 2 and 5 yields slight SE
improvements, although it is clear that guaranteeing a higher
number of iterations is preferable.

15 MR precoding, low UE density, N = 4
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Fig. 6. Average DL SE of UEs per episode for different number of iterations
(nj) in the proposed UAV trajectory optimization. Results consider the low
UE density scenario, with N = 4 and MR precoding.

Nonetheless, it is important to note that the number of
iterations is not always a controllable design parameter. It
is computed as the velocity ratio of UAVs and UEs and
represents the time frame where UEs positions do not change

considerably. In this way, if the UEs velocities are high, it may
not be possible to deploy UAVs with even higher velocities.
If we assume a maximum UAV velocity of 100 km/h, the
allowed UEs velocities depend on the number of iterations
n;. Besides, the required propulsion power of UAVs increases
with their velocities, which may lower EE even though SE
improves. Fig. 7 illustrates the average DL EE of UEs vs. the
maximum UE velocity varying the number of iterations nj,
exemplifying how the UEs and UAVs velocities impact the
total EE. The results in this figure assume the average EE
performance of the proposed algorithm obtained at episode
100. It can be noted that EE of the proposed algorithm can be
lower than the fixed positioning approach, depending on the
UE:s velocities and number of iterations n;. For instance, with a
maximum UE velocity of 20 km/h, the SE gains provided by a
five-fold higher UAV velocity (i.e., n; = 5) do not compensate
in terms of EE compared with fixed positioning.

MR precoding, Low UE density, N = 4
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Fig. 7. Average DL EE of UEs vs. maximum velocity of UEs varying the
number of iterations n;. Results are for MR precoding, low UE density, with
N =4.

Moreover, the intersection points where the proposed ap-
proach matches the fixed positions occur at even lower UE
speeds the higher the n; value, as shown in Fig. 7. This portrays
the dominance of the UAVs propulsion power over the other
variables in the total power consumption, especially at higher
UAVs speeds. In terms of flight autonomy, the impact of the
increased power consumption for high UAV speeds affects the
just UAVs that are adjusting their positions. Since the proposed
method alternates the selected UAVs in each episode, the
reduction of flight autonomy time of each UAV is mitigated.
Essentially, each UAV moves at a higher speed for a brief
period before hovering and allowing the next UAV to move.
For example, if we consider a maximum speed of 10 km/m
for the UEs, we can determine the flight autonomy time by
varying the maximum speed of the UAV. Additional results
show that with a maximum UAV velocity of 20 km/m (when
n; = 2), the flight autonomy time is around 51 minutes.
Similarly, with a maximum UAV velocity of 100 km/m (when
n; = 10), the flight autonomy time reduces to 46 minutes. This
time difference is not significant because the UAVs alternate
between moving and hovering.

Fig. 8 illustrates the performance of the proposed UAV
trajectory optimization for MR, LP-MMSE, P-RZF, and



P-MMSE precoding schemes. Results consider low UE density
scenarios. Noticeable, the algorithm to heuristically optimize
the UAV positions can be used with precoding schemes other
than MR, even though it is based on the simpler MR closed-
form expressions for achievable SE. Recall that the proposed
algorithm uses the MR closed-form regardless of the precoding
choice to take advantage of the long-term CSI.

Furthermore, the findings depicted in Fig.8 provide evi-
dence of the superior performance of distributed LP-MMSE,
centralized P-RZF and P-MMSE compared to MR. For in-
stance, their average SE can exceed that of MR by more than
twofold (approximately 2.17 to 2.41 times higher). Besides,
the SE improvements achieved by the proposed approach are
also higher, e.g., up to 47.84% for LP-MMSE, 38.14% for
P-RZF, and 35.24% for P-MMSE, when compared with the
fixed UAV position with 4 antennas per TRP. As with MR
precoding, the results for the other precoding schemes also
show that the 4 antennas per TRP configuration yields slightly
higher SE improvements than with 2 antennas per TRP,
although not readily observable in the figure. An interesting
behavior to notice is that LP-MMSE favors the 4 antennas per
TRP scenario while P-RZF and P-MMSE perform better with
4 antennas. This is attributed to the impact of the number of
antennas per TRP in their capacity to mitigate interference.
Generally, centralized precoding schemes are able to combine
information of different TRPs to mitigate better inference,
benefiting from having more TRPs across the coverage area.
On the other hand, distributed precoding uses only local
information, requiring a balance in the number of TRPs and
antennas per TRP.
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Fig. 8. Average DL SE of UEs per episode for MR, LP-MMSE, P-RZF, and
P-MMSE precoding schemes. Results consider low UE density scenarios.

B. Hybrid Terrestrial and Aerial TRPs Scenario

This subsection explores scenarios where UAVs are tem-
porarily deployed to assist in cases where the terrestrial
infrastructure is still available, but a surge in demand requires
additional TRPs to provide a better service experience. Specifi-
cally, hybrid scenarios that combine aerial and terrestrial TRPs

are evaluated to deal with high UE density traffic and high
UEs data rates demands. It is assumed the path loss and LoS
probability models for both terrestrial and aerial TRPs remain
consistent, mitigating potential influences on the following
result evaluation.

Fig.9 illustrates the average DL SE of UEs per episode
for medium and high UE density and N = 4. The results
compare D-mMIMO systems consisting exclusively of ter-
restrial TRPs with those with a combination of terrestrial
and aerial TRPs. It also presents results for MR, LP-MMSE,
P-RZF, and P-MMSE precoding schemes. In the results, L,
stands for the number of terrestrial TRPs while L, stands for
the number of aerial TRPs, with the total number of TRPs
defined as L = L; + L,. The simulation parameters emulate
scenarios where the terrestrial infrastructure is deployed to
serve a medium UE density (i.e., K = 130, L = L; = 167).
For instance, this provides an average SE per UE of 2.275
bit/s/Hz with MR precoding. However, when the number
of UEs increases (high UE density with K = 200), the
deployed terrestrial TRP can only provide 1.817 bit/s/Hz per
UE. This represents a decrease of approximately 20% due to
the increased interference and competition for radio resources.
Fortunately, with the aid of UAVs, it is possible to restore
the per UE performance to 2.144 bit/s/Hz if L, = 49 or
up to 2.359 bit/s/Hz if L, = 98. In the LP-MMSE, P-RZF,
and P-MMSE precoding schemes, similar behaviors can be
observed. However, even after deploying an additional 98
UAVs when the number of UEs is 200, the SE performance
is not superior to that of the terrestrial scenario with only
130 UEs, as it happens with MR precoding. To achieve that,
these precoding options would require even more additional
TRPs, especially in the case of LP-MMSE. Nonetheless, these
precoding choices provide superior performance than MR in
any of the analyzed cases. Additionally, P-MMSE precoding
is the one that achieves the highest SE performance, making
it the preferable choice.
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Fig. 9. Average DL SE of UEs per episode for medium and high UE density
and N = 4. Comparison between D-mMIMO systems consisting exclusively
of terrestrial TRPs and those with a combination of terrestrial and aerial TRPs.
Results are for MR, LP-MMSE, P-RZF, and P-MMSE precoding schemes.



C. Required Fronthaul Rate

This section investigates the required rate of the wireless
fronthaul links connecting the TRPs to the CPU. In Fig. 10, the
results consider UC D-mMIMO systems consisting exclusively
of aerial TRPs UAVs, for a low UE density scenarios, when
the proposed UAV trajectory optimization is performed.

Fig. 10a presents the required fronthaul rate for distributed
LP-MMSE and centralized P-MMSE precoding schemes. For
both precoding schemes, the required fronthaul rate increases
with the number of antennas per TRP. This occurs because
the achievable UEs’ SE also increases with the number of
antennas per TRP. Hence, in order to maintain an acceptable
SE degradation due to fronthaul data samples set as ageg =
0.1 bit/s/Hz, the bit width also increases. Furthermore, it is
noteworthy that the required fronthaul rate is much higher
for a distributed implementation than for a centralized one.
For N = 2 and N = 4, the rate can be around 2.7 and
1.9 times higher, respectively, when comparing distributed
to centralized implementations. This happens because the
fronthaul rate scales with different parameters, as exposed in
(24). In distributed implantation, it scales with the number of
UEs served by each TRP, which is set as |D;| < (7, = 10).
Whereas in centralized implementations, it scales with the
number of antennas per TRP NV, which in the results is set
either as 2 or 4. Noting that N < 7, this behavior is expected.

In Fig. 10b, it is shown the cumulative distribution function
(CDF) of DL SE with and without a maximum fronthaul rate
per link constraint. If a maximum fronthaul rate per TRP
is assumed, the number of quantization bits per sample for
data transmissions is still computed by incrementing the bit
width to achieve an acceptable SE degradation of age, = 0.1
bit/s/Hz, but only up to a maximum bit width value. In the
results, the maximum bit width value corresponds to a rate of
10 Gbit/s, which is computed using (24). The results analyze
only LP-MMSE precoding since it can require more than 10
Gbit/s per link when there is no fronthaul rate limitation, as
shown in Fig. 10a. It can be noticed that limiting the fronthaul
rate to 10 Gbit/s has little impact on the CDF of SE. Only
the most fortunate UEs suffer a slight decrease in their SE
performances.

VI. CONCLUSIONS

This paper investigated the performance of scalable UC
D-mMIMO systems enabled by a swarm of UAVs acting as
TRPs, which could operate independently or in conjunction
with terrestrial TRPs. A comprehensive study on deployment
and trajectory optimization of UAVs was conducted, proposing
a novel heuristic approach to optimize the positions of aerial
TRPs. As far as the authors are aware of, the proposed heuris-
tic approach is the first to consider the continuous movement
of UEs within the coverage area for UC D-mMIMO systems.
Specifically, it optimizes the three-dimensional locations of
each UAV under a time-discretized framework divided into
episodes, each consisting of several iterations. The positions
of UEs vary between episodes through a discrete-time Markov
chain. The positions of TRPs are optimized iteratively based
on the ratio between maximum velocities of UAVs and UEs,
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Fig. 10. (a) Average required fronthaul rate per episode for LP-MMSE and

P-MMSE precoding schemes. (b) CDF of DL SE with and without limitation
of the fronthaul rate. Both results are shown for low UE density scenarios.

and the MR precoding closed form for SE. Moreover, each
UAV adjusts its position independently, guaranteeing the SE
is not affected by the movements of other UAVs.

The evaluation of the heuristic approach assessed the
achievable DL SE performance using MR, LP-MMSE, P-RZF,
and P-MMSE precoding, assuming densities from 144 to 800
UEs per km?. Results indicated that although the optimization
only utilizes the MR equations, the method can be applied
to more advanced precoding with significant performance
improvements for all considered UE densities. In fact, for a
fully aerial network with low UE density, the SE enhancements
were 29.76% for MR, 47.84% for LP-MMSE, 38.14% for
P-RZF, and 35.24% for P-MMSE, comparing the proposed
method with fixed UAV deployment. The most significant SE
improvements were usually found at the lower UE density and
with a higher number of iterations. Despite this, in terms of
DL EE, the additional propulsion power required for UAVs to
move at high speeds may not be justified by the benefits of
more iterations.

Another notable insight from the results was that when the
terrestrial infrastructure is overwhelmed by a surge in UE
density or demand, temporarily deploying UAVs can restore
network performance in terms of SE. Finally, the effects of
fronthaul constraints were also examined. Specifically, when



the fronthaul rate was limited to 10 Gbit/s, it had no significant
impact on the CDF of SE compared to scenarios with uncon-
strained fronthaul. Additionally, when seeking a quantization
level with minimal SE degradation under unrestricted fronthaul
rates, the findings indicated that LP-MMSE distributed precod-
ing require more fronthaul capacity than centralized options.

Based on the observed findings and novelty of the proposed
approach, it is reasonable to suggest that this paper can
serve as a benchmark for subsequent studies in this field.
Future research directions might include exploring the use
of fixed-wing UAVs within the proposed framework, and
examining the effects of channel aging, which leads channel
estimates to become rapidly outdated due to the mobility of
both UEs and UAVs. Further investigations could also assess
different antenna array configurations and patterns, evaluate
how weather conditions affect UAVs’ positioning accuracy,
and consider the implications of no-fly zones that restrict the
operational spaces of UAVs.
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