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Abstract—This study focuses on characterizing the channel of
a reconfigurable intelligent surface (RIS)-assisted wireless system
operating over Nakagami-m fading channels. Although numerous
works have proposed approximate or asymptotic solutions for the
RIS channel statistics (namely, the probability density function
(PDF) and the cumulative distribution function (CDF)), only a
limited number of studies have tackled this problem by resorting
to exact approaches. Regrettably, as the number of RIS elements
increases, these approaches lead to solutions that are computa-
tionally expensive or entail a high mathematical intricacy. This
has prompted the analytical development undertaken in this
work. Herein, our emphasis is on an exact approach. Specifically,
we furnish handy and tractable formulas for the PDF and the
CDF of the investigated RIS channel. The expressions introduced
in this study stand out as new contributions to the literature and
are arguably the most efficient exact solutions available to date.
Numerical simulations revealed the heightened efficiency of our
proposed PDF and CDF expressions against the state-of-the-art
solutions. Furthermore, we conducted a performance assessment
analysis for the considered RIS-assisted wireless communication
system by deriving exact and asymptotic expressions for key
performance indicators, namely the outage probability (OP) and
the average bit-error rate (ABER). Comprehensive numerical
simulations validated the accuracy of our analytical results.

Index Terms—Average bit-error rate, channel characterization,
cumulative distribution function, Nakagami-m fading channels,
outage probability, probability density function, reconfigurable
intelligent surface.

I. INTRODUCTION

ECONFIGURABLE intelligent surfaces (RISs) have

emerged as a compelling technology for upcoming wire-
less systems. Their capacity to intelligently reshape the wire-
less communication environment promises enhanced reception
reliability at a cost-effective scale, positioning them as a
key candidate for next-generation wireless solutions [1]. By
dynamically manipulating the propagation environment, RIS
can extend the coverage and range of wireless communication
systems. That can be particularly beneficial in millimeter-wave
communication scenarios, where signal propagation encoun-
ters significant limitations [2]. RIS can further enhance energy-
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efficient communication systems by optimizing signal paths
and diminishing the requirement for high-powered transmis-
sions [3]. The integration of RIS in wireless networks holds
great potential for maximizing spectral efficiency and address-
ing the increasing demands for data transmission in a more
intelligent and sustainable manner [4]. RIS has demonstrated
its effectiveness in synergy with other enabling technologies,
such as non-orthogonal multiple access (NOMA) and multiple-
input multiple-output (MIMO) systems [S5]-[7]. RIS has also
found extensive application in different communication sce-
narios, including unmanned aerial vehicle (UAV), device-to-
device (D2D), and terahertz (THz) communications [8]-[20].

Owing to the promising features and benefits of RIS, there
is a shared interest in understanding its impact on wireless
communication systems. Numerous research endeavors have
been dedicated to analyzing the performance of wireless
networks assisted by a RIS. However, to effectively asses
system performance, it is first required to characterize the RIS
channel. Several attempts have been carried out to characterize
the RIS channel under the assumption or disregard of optimal
phase shifting (OPS)."? In any case, characterizing the RIS
channel is a quite cumbersome task—especially for the RIS-
OPS case. In the RIS-nOPS case, the channel is constructed
by the sum of random vectors. Conversely, in the RIS-OPS
case, the channel is formed by the sum of the product of two
random variables (RVs), each RV denoting the fading channel
that the signal traverses.

A. Related Works

Researchers have undertaken various efforts to assess the
effectiveness of RIS technology in enhancing communication
performance across diverse enabling technologies, as well as
through several fading channels. Nonetheless, due to the com-
plex mathematics involved, most of the available performance
studies resort to approximate or asymptotic approaches to
unveil the RIS channel statistics (namely, the probability den-
sity function (PDF) and the cumulative distribution function
(CDF)). Some of these approaches include the Central Limit
Theorem (CLT), the moment-matching method, Laguerre ex-
pansions, Laplace transform (LT) expansions, and the saddle-

'OPS implementation requires channel state information (CSI). In practice,
acquiring CSI typically involves multiple pilot transmissions [1].

2Hereinafter, we will refer to as “RIS-OPS” when considering a RIS with
OPS, as “RIS-nOPS” when referring to a RIS with no OPS, and simply as
“RIS” when referring to both (with and without OPS).



TABLE I
RIS CHANNEL STATISTICS OF PREVIOUS RIS-RELATED STUDIES

Paper S-RIS Link RIS-D Link Direct Link OPS Method Approach
[21] Rayleigh Rayleigh No No CLT Approximated
[22], [23] Rayleigh Rayleigh No Yes CLT Approximated
[24] Rayleigh Rayleigh No Both CLT and Kluyver’s Integral Approx. and Exact
[7] Rayleigh Rayleigh No Both CLT Approx. and Bounds
[25] Rayleigh Rayleigh No No Multivar. Fox H-function Exact (Numerical)
[5], [26], [27] Rayleigh Rayleigh No No Gamma Approximated
[6], [28], [29] Rayleigh Rayleigh No Yes Gamma Approximated
[30] Rayleigh Rayleigh No Yes Gamma Approximated
[31] Rayleigh Rayleigh No Yes Laguerre Expansion Approximated
[32] Rayleigh Rayleigh No Yes CLT and K¢ Approximated
[33] Rayleigh Rayleigh No No Upper bounds Bounds
[34] Rayleigh Rayleigh Rayleigh Yes CLT Approximated
[35] Rayleigh Rayleigh Rayleigh Yes CLT Approximated
[36] Rayleigh Rayleigh Rayleigh Yes (Sj?li(rirlﬁ)fliog(l)tuir(ll(si Ap]g(r)?;; df;md
[37] Rayleigh Rayleigh Rayleigh No Gamma Approximated
[38] Rayleigh Rayleigh Rayleigh Both Gamma Approximated
[39] Rayleigh Rayleigh No Yes Kqg Approximated
[40] Rayleigh Rician No Yes Kg Approximated
[41] Rician Rayleigh No No Nakagami-m Approximated
[8] Rician Rayleigh No Yes MG Approximated
[42] Rician Rician No Yes Laguerre Expansion Approximated
[43] Rician Rician Rayleigh Yes CLT Approximated
[44] Rician Rician Rician Yes Gamma Approximated
[45] Rician Rician Ka No Nakagami-m Approximated
[20] MG MG No Yes MG Approximated
[46] MG MG No Yes MG Approximated
[10], [15], [47] Nakagami-m Nakagami-m No No Gamma Approximated
[48], [49] Nakagami-m Nakagami-m No No CLT Approximated
[16] Nakagami-m Nakagami-m No Yes LT Approximated
[17] Nakagami-m Nakagami-m No Yes LT and CLT Approximated
[50] Nakagami-m Nakagami-m No No HT Exact
[11], [51] Nakagami-m Nakagami-m No Yes Gamma Approximated
[52] Nakagami-m Nakagami-m No Yes CLT Approximated
[53] Nakagami-m Nakagami-m No Yes Laguerre Expansion Approximated
[54] Nakagami-m Nakagami-m Rayleigh Yes CLT Approximated
[14] Nakagami-m Nakagami-m Nakagami-m Yes Laguerre Expansion Approximated
[55] Nakagami-m Nakagami-m Nakagami-m Yes Gamma Approximated
[12] Nakagami-m Nakagami-m Nakagami-m  Both CLT and Gamma Approximated
[9], [56] Nakagami-m Nakagami-m Nakagami-m Yes Gamma Approximated
[13], [57] Nakagami-m Nakagami-m Nakagami-m Yes CLT Approximated
[58] Nakagami-m Nakagami-m Nakagami-m No Hankel Transform Exact
[59] Nakagami-m Nakagami-m Nakagami-m Yes Gamma and Log-Normal Approximated
[60] Nakagami-m Nakagami-m Nakagami-m Yes CLT and Gil-Pelaez’s Integral Approximated
. . . CLT, HT, and Approx. and
[61] Nakagami-rn Nakagami-rm Nakagami-mz  Both Gil-Pelaez’s Integral ExacltJPENumerical)
[62] Rician/Nakagami-m Rician/Nakagami-m No Yes CLT and Gamma Approximated
[63] Eﬁtﬁﬁf}géﬁ!gﬁ. g?tiﬁyg;%g}ﬁ No Both Multivar. Fox H-function Exact (Numerical)
[18] FTR FTR No Yes Multivar. Fox H-function Exact (Numerical)
[64] DGG DGG DGG Yes Multivar. Fox H-function Exact (Numerical)
[65] Weibull Weibull Rayleigh No Gamma Approximated
[19] - Q- [t No Both CLT and Gamma Approximated
[66], [67] K-t K-[4 R[4 Yes Gamma Approximated
[68] K-p4 K-fL K-f4 No Gamma and KL Diverg. Approximated
[69] Extended n-p Extended n-p Extended n-p Yes Gil-Pelaez’s Integral Exact (Numerical)

point approximation. On the other hand, a limited number of
works rely on exact approaches to acquire the RIS channel
statistics. These approaches include the multivariate Fox H-
function, the Gil-Pealez’s integral, the Kluyver’s integral, and
the Hankel transform (HT). Table I compiles the RIS channel
statistics of previous representative studies. More precisely,
Table I outlines: the fading model between the source and the
RIS (second column); the fading model between the RIS and
the destination (third column); the presence or absence of the
direct channel (fourth column); the assumption or disregard

of OPS (fifth column); the method applied to characterize the
RIS channel (e.g., CLT, moment-matching method, and saddle-
point) (sixth column); and the nature of the solution (e.g.,
bounds, asymptotic, approximated, exact) (seventh column).

B. Drawbacks and Limitations

While the reported approximate and asymptotic solutions
can rapidly and efficiently compute the RIS channel statistics,
they encounter inherent accuracy and convergence challenges.
For instance, the CLT provides a good approximation for the



“central” (near the peak) region of the distribution. However,
the CLT lacks accuracy in estimating tail probabilities—both
left and right tails—, making it less effective in capturing rare
events probabilities, particularly for distributions with heavy
tails. Additionally, the sample size (i.e., the number of RVs)
should be sufficiently large for the CLT to be applied. It is
worth noting that convergence to a normal distribution may
be slower, especially if the underlying distributions deviate
significantly from normality. Several other studies utilize the
moment-matching method to approximate the PDF of the RIS
channel to a Gamma, Nakagami-m, generalized-K (K¢), or
Log-normal distribution. Nonetheless, the moment-matching
method may not be accurate in approximating right-tail prob-
abilities. That is primarily because the moment-matching
method focuses on matching lower-order moments, and when
dealing with heavy-tailed distributions—higher-order moments
play a crucial role in characterizing the tail distributions—,
ignoring these higher moments can result in inaccuracies at the
extreme values of the distribution. Bounds and asymptotic ap-
proximations (e.g., saddle-point approximation), on the other
hand, are deemed effective for approximating tail distributions
in scenarios where the CLT or the moment-matching method
may lack accuracy. However, their utility lies in approximating
the PDF within a specific region, not encompassing the entire
PDF, a crucial aspect in certain wireless scenarios.

To overcome the aforementioned issues, some studies have
resorted to numerical approaches (e.g., multivariate Fox H-
function, Gil-Pealez’s integral, Kluyver’s integral) to provide
exact solutions for the RIS channel statistics. Regrettably,
these solutions are either computationally expensive or involve
significant mathematical complexity. Furthermore, due to their
purely numerical nature, their accuracy is restricted by ma-
chine precision.

C. Motivation and Contributions

Despite the high reliability of exact solutions, only a few
works address this problem in an exact manner. However, as
stated earlier, these solutions are computationally expensive
or entail a high mathematical intricacy. This has motivated
the analytical development pursued in this study. This paper
endeavors to derive new exact and efficient formulas for the
RIS-OPS channel statistics. Our ultimate goal is to accurately
and efficiently assess the performance of a wireless communi-
cation system assisted by a RIS-OPS and subject to Nakagami-
m fading channels. The main contributions of this work are
as follows.

1) We propose novel tractable and efficient formulas for
the exact statistics (PDF and CDF) of the RIS-OPS
channel. To do so, we assume independent and iden-
tically distributed (i.i.d.) Nakagami-m fading channels.
Our derived formulations are deemed to be new in
the literature and are arguably the most efficient exact
solutions reported to date.

2) We carry out a performance assessment analysis for a
wireless communication system assisted by a RIS-OPS.
Concretely, we obtain exact and asymptotic expressions
for the key performance indicators (KPIs) of the system,

specifically the outage probability (OP) and the average
bit-error rate (ABER).

3) We conduct an efficiency analysis comparing our pro-
posed PDF and CDF expressions with the existing state-
of-the-art solutions. Numerical simulations demonstrate
that our expressions outperform the competing exact
solutions in terms of accuracy, tractability, and compu-
tation time.’

D. Structure and Notation

The remainder of this paper is structured as follows. In
Section II, we introduce the RIS-aided wireless system model.
In Section III, we propose new exact formulas for the RIS
channel statistics. In Section IV, we assess the performance
of the investigated wireless communication system assisted
by RIS-OPS. In Section V, we corroborate our analytical
findings through numerical simulations. Finally, in Section VI,
we summarize and conclude this paper.

In the sequel, Ey, denotes expectation; Pr[-], probability;
( -)T, transpose; (), Hermitian transpose; diag [-], returns the
diagonal elements of a square matrix; Re[-], returns the real
part of a complex number; min(-,-) and max(-,-), are the
minimum and maximum operators, respectively; | - |, denotes
absolute value; |-| and [-] are the floor and ceiling operators,
respectively; max,, {-}, denotes the maximum value of a set
of n elements; sup,, {-}, denotes the supremum of a set of
n elements; I'(-), the gamma function [70, eq. 6.1.1]; T (-, ),
the lower incomplete gamma function [71, eq. (8.2.D)]; " (-, -),
the upper incomplete gamma function [72, eq. (8.350.2)];
K, (+), the modified Bessel function of the second kind and vth
order [73, eq. (03.04.02.0001.01)]; 2F> (-, ,-;-), the gener-
alized hypergeometric function [73, eq. (07.25.02.0001.01)];
CN (u,0?), stands for a complex Gaussian distribution with
mean y and variance o2; N'K (m, (), signifies a Nakagami-
m distribution with shape parameter m and spread parameter
Q; ~, denotes “distributed as”; i = \/—1, the imaginary
unit; C, the set of complex numbers; R, the set of real
numbers; RT, the set of positive real numbers excluding
zero; N, the set of natural numbers; Z, the set of integer
numbers; and ~, “asymptotically equal to around zero,” i.e.,

~ i P@)
h(z) ~ g(z) <= ili% o = L.

II. SYSTEM MODEL

Herein, we consider that a RIS composed of L elements
assists the communication between a source node (S) and a
destination node (D). Both nodes are equipped with a single
antenna and operate in half-duplex mode. We also consider
that the direct link between the source and destination nodes is
blocked due to the presence of big obstacles, such as buildings
and/or trees, as illgstrated iI} Fig. 1.

Let hy = [hl,h...,hl,L]T € CLx1 and h, =
[i:L2717 e EQ,L}T € CEF*! be the vectors containing the
channel coefficients between S and the /th element of the RIS

3Computation time or elapsed time refers to the actual amount of time it
takes for a computer or system to perform a specific computational task, from
the initiation to the completion.
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Fig. 1. System model.

¢ = 1,2,...,L), and between the /th element of the RIS
and D, respectlvely, where R, = hy el ® (r € {1,2}) with
h,¢ and ¢, being the envelope and phase components of
the channel coefficient, respectively. Additionally, we assume
that {hy,}r, and {ha,}L_, are sets of ii.d. Nakagami-m
RVs with hLz ~ NlC(ml,Ql) and h2_[ ~ N’C(mQ,Qg).4
Accordingly, the received signal at D is given by

y =VP (dydz)"""* (h'Ohy) s + w, (1)

where P is the transmitted power, d; and d are the distances
of the S-RIS and RIS-D links, respectively, u is the path
loss exponent, s is the transmitted data symbol satisfying
(without loss of generality) E[|s]?] = 1, w ~ CN(0,202)
is the complex additive white Gaussian noise (AWGN), and
O = diag [eial, .. ,eiaL} is the RIS reflection matrix with
¢ € [0,27] denoting the associated ¢th phase shift.

From (1), the instantaneous signal-to-noise ratio (SNR) at
D can be written as

7 =p|(ni'Eh,)["

L
=P Zhlﬂhz,zeiw”‘i’l’ﬁ%,e)
=1

where p = P (d1dy)” " /202 is the average SNR per symbol.

Aiming at maximizing the instantaneous SNR, we assume
that the RIS has a perfect knowledge of the CSI. Therefore,
OPS can be applied (ie., 8y = —¢1¢ — ¢2¢) and the
instantaneous SNR at D reduces to

L
Z hieha e
—1

In order to unveil the system performance of the considered
RIS-aided wireless system, it is imperative to characterize the
instantaneous SNR ~ in (3), which involves finding the sum
statistics of the product of two Nakagami-m RVs. Although,
there are several works that address this problem via approx-
imate or asymptotic procedures, only a few works address
this problem in an exact manner. Unfortunately, the available

2

2

2

y=p 3)

4The Nakagami-m fading model is a generic and versatile distribution that
includes, as special case, the Rayleigh distribution (typically used for non-
line-of-sight scenarios). In addition, it can also closely approximate the Hoyt
and Rice distributions [9], [54].

exact approaches carry some computational limitations. This
has spurred the analytical development pursued in this study.

In the next section, we will introduce new exact and efficient
formulas for the sum statistics required in (3).

III. REQUIRED SUM STATISTICS
Let us define H as the sum of i.i.d. RVs, namely

L
H2 Z H,, “4)
=1

where Hy = hy ¢ho is the product of two Nakagami-m RVs
hi,e and hs ¢, each having a PDF given by
m.h, 5
) ®

2 ()"t
hog) = " : B
fhpe (R e) T (m,) exp
where m,. and €, (r € {1,2}) are their corresponding shape
and spread parameters, respectively.
The PDF of Hy is given by [74, eq. (6)]

4w%(m1+m2)h2n1+m2—1
Koy —m, (2 h )
T (m1)T (ma) ! ( Vo Z)
(6)

fr, (he) =

mims

where ¢ = (QIQZ
In the following two theorems, we derive the exact statistics
for the sum outlined in (4).

Theorem 1. The PDF and the CDF for the sum in (4) when
Im1 — ma| € RY\ o, with d = N—1, are respectively given
by

fr(h) =a*h~ exp (—2hﬂ>

oo i 2L min(my,m2)+1
e r (Z + 2L min (ml, mg))

)

FH(h) _ L47Lmin(m1,m2)
>\ Y (2L min (my,m2) + i, 2h/1) ®)
X
T (i + 2L min (my, ms)) ’
where

o VAT ImmmelT (2 |my — my)) (9)
T (m1) T (m2)T (3 — [m1 —mal)’

and the coefficients 9; (i > 0) are given by

) L
5o = T (% —|mi — mg\) (2 mlil (mq, ma)) (102)
r (|m1 — ma| + 5)
L&
0i =75 > 0kbik (KL + k — i)
o k=1
x (=2)" T (k4 2min (m1,ms)), i>1. (10b)
Additionally, 6y, in (10b) can be obtained as
J=1\T (4 = lmi—ma| + 3)
. 11
o= k.Z( ) TGt —malrd) P

Proof. Please, see Appendix A. ]



In Appendix C, we demonstrate that the sum PDF in (7)
converges uniformly and absolutely on h. A similar approach
to that used in Appendix C can be applied to establish the
uniform and absolute convergence of the sum CDF in (8).

Below, we provide some computational remarks concerning
the PDF and CDF expressions outlined in Theorem 1.

Computational Remark 1: There are three key distinctions
between the derived PDF and CDF expressions provided in
Theorem 1 and the current competing exact solutions given in
[61] and [63]: (i) accuracy, (ii) computational burden, and (iii)
mathematical tractability.

(i) Accuracy: As seen in Table I, the state-of-the-art solu-
tions for computing the RIS-OPS channel statistics under i.i.d.
Nakagami-m fading channels are given in [61] and [63]. These
solutions rely on the Gil-Pelaez’s integral and the multivariate
Fox H-function. Unfortunately, although these approaches are
exact in a mathematical sense, they are limited by machine
precision due to their purely numerical nature. More precisely,
both the Gil-Pelaez and the multivariate Fox H-function ap-
proaches rely on the numerical evaluation of infinite-range
integrals—one integral for the Gil-Pelaez approach and mul-
tiple complex integrals for the multivariate Fox H-function.
Consequently, an accuracy control cannot be assured since
it depends entirely on the software’s numerical integration
method (e.g., trapezoidal rule, Riemann rule, quasi Monte
Carlo) and the initial parameter settings (e.g., accuracy goal,
working precision, maximum number of evaluation points).
For instance, a target accuracy of 1072° can be challenging
to attain—if not impossible. In contrast, (7) and (8) can reach
any target accuracy by merely increasing the number of terms
in their sums, albeit at the expense of additional computational
load. In particular, by fixing the number of terms to 200 and
20 in (7) and (11), respectively, yields an outstanding PDF
accuracy of less than 1072°, This aspect will be addressed in
detail in Section V.

(ii) Computational Burden: The numerical evaluation of
Gil-Pelaez’s integral poses challenges due to the oscillatory
and slowly decaying behavior of the integrand, leading to
the addition of a substantial number of regions with nearly
equal magnitudes and alternating signs, contributing to an
increase in the computation time of the integration routine. On
the other hand, the computational burden of the multivariate
Fox H-function approach rises in tandem with the number
of RIS elements (L). Indeed, in order to compute the RIS-
OPS channel statistics, one must execute multiple infinite-
range complex integrations, where the number of complex
integrals equals the number of RIS elements—this holds true
even for the i.i.d. case—, thereby escalating its computational
burden and possibly leading to instability issues. In contrast,
(7) and (8) require only addition and multiplication operations
and do not involve any numerical integration. Moreover, the
computational burden of (7) and (8) remains unchanged as
no additional infinite (or finite) summations or products are
incorporated in the computation when the number of RIS
elements grows. More importantly, as (7) and (8) are expressed
in terms of elementary functions (e.g., gamma and exponential
functions), they can be efficiently computed in any mathemat-

ical software. In particular, for a RIS-OPS scenario with i.i.d.
Nakagami-m fading channels, (7) and (8) proved faster than
the solutions in [61] and [63]. This aspect will be thoroughly
confirmed in Section V.

(iii) Mathematical Tractability: It should be noted that the
mathematical intricacy of the solutions provided in [61] and
[63] escalates with L. For instance, the number of Gauss
hypergeometric functions in the integration kernel of [61]
increases with the growth of L. Similarly, the number of
gamma functions in the integration kernel of [63] grows along
with L. Conversely, the number of gamma functions as well
as other mathematical functions in (7) and (8) remains con-
stant as L grows, thus retaining its mathematical complexity.
Mathematical tractability is a crucial feature when deriving the
KPIs of any communication system. Specifically, it will allow
us to evaluate them in an efficient or closed-form manner, as
will be seen in Section IV.

A. Truncation Error Analysis

When the number of terms in (7) and (8) is fixed to ¢, we
can respectively defined the associated truncation errors as

€ty (h) 2alh™ exp (—Qh\/zZ)
(5 21 (hﬂ)2Lmin(m1,m2)+z

12
I’ (4 4+ 2L min (my, ma)) 12

€y (M) ZaL4 me(ml’mz)
Xffﬂ@hmwmm””ﬂww.aw

= T (2L min (ml, mg) + Z)

In Appendix D, we show that (12) can be upper bounded
in closed form as

€fn (h) < \/EO(L21_2L min(ms,ms2)

T (2Lmin (my,mo) +t—1, Qh\/ﬂ) 14
. ' (2L min (mqy,m2) +t —1) - 19

In like manner, in Appendix E, we demonstrate that (13)
can be upper bounded in closed form as

. 2L min(my,m2)
€y (h) <aL47me(m1,m2) (Qh\/E) 1,M2

21D’
F (t + 2Lm1n (m17 m2> + 1)
+exp (Qhﬂ) (4h21/}) — L min(my,m2)

T (2L min (my,mg) + ¢ + 1,2h/3))
I' (2L min (mq,ma) + ¢t + 1)

5)

Y (a+t,h
b et — 0 for a,b € R,

it is evident that (14) and (15) api;oroach to zero as the number
of terms ¢ increases.

The expressions (14) and (15) hold practical significance
for analyzing the accuracy of the PDF and CDF expressions
given in Theorem 1. More precisely, they provide the sufficient
number of terms in (7) and (8) to achieve a desired accuracy.

=0 and lim

Since lim D Tats)



In the following theorem, we alleviate the PDF-parameter
constraint prevalent in Theorem 1. Specifically, we provide
closed-form expressions for sum statistics in (4) taking into
account |m; —ma| € N— 1.

Theorem 2. The PDF and the CDF for the sum in (4) when
|m1 —mg| € 9, with 9l = N — 3, are respectively given in
closed form as

h2L min(my,m2)+i—1

Pi
h 2h
Jrr (k) =" exp ( \/>) Z i+ 2L min (mq,ms))
(16)
—1—2L min 1,M2
BLZ% (2yg) )
i+ 2L min (mq,ms))
“ T (z + 2L min (my, mo) ,Zhﬂ) : (17)
where m' = [|m1 —ma| — 1],
T 1
2172m4f p mit+me—m'—3
5= VTV , (18)
F (ml) F (mg)
and the coefficients @; (i > 0) are given by
| T (2min (my,my)) T (Jm1 — ma| +mf + 3)
0 T (mf + 1)T (mf + |my — ma| + 1)
(19a)

%%=£g§:%wwj@j+j—ﬁ(%ﬂ@j
i=1

x T'(2min (my,ms) + j), 1<i<m' (19b)

mt .
Pi Z% > iig (Lj+j—1) (4\/1Z)J
j=1

mt+1 <i< Lm?.
(19¢)

[% — |ma —mgﬂ and ¢; in (19c) can be

x ' (2min (mq, ms) + j),

Moreover, mt =
calculated as

6 — L (=j+ |[m1 — ma| +mt + 3)
P (—j+mt+ )T (G + jmy —mao| +mi + 1)
Proof. Please, see Appendix F. ]

Computational Remark 2: Since (16) and (17) are given in
closed form, they attain constant runtimes and are exempt from
accuracy limitations.

It is worth emphasizing that the PDF and CDF expressions
provided in Theorem 1 and Theorem 2 are the main contribu-
tions of this work and are arguably the most efficient solutions
reported to date for the investigated scenario.

IV. PERFORMANCE EVALUATION

In this section, we assess the performance of the wireless
communication system detailed in Section II. More precisely,
we derive exact and asymptotic formulas for the KPIs, namely
OP and ABER. In the sequel, we will divide the analysis
for each KPI into two cases. We will refer as Case I when
adopting |m; — mao| € R*\ &, and as Case II when adopting
|my —ma| € A.

A. Outage Probability

The OP is defined as the probability that the instantaneous
SNR falls below a pre-determined threshold ~y,, that is,
Pout = Pr ['Y S 'Yth] . (20)

From (3), the OP can be computed in terms of the CDF of
H as

Pow =Pr [PH2 < ’Yth}
—Fy ( Yth )
V p

1) Case I: From (8), an exact OP expression can be readily
derived as

2

P(])Iit \Qg L4—L min(my,mz)
o §; T <2Lmin (my,mg) + 1,2 %)
X . .
P I (2min (mq, mg) + ©)

(22)

Next, we provide an asymptotic analysis for the OP, which
allows us to gain valuable insights into how the fading param-
eters affect the system performance in a high SNR regime—a
regime of paramount interest in wireless communications.

Notice that in the high SNR regime (i.e., when p — ©0),
only the first term dominates the series in (22). Hence,
considering only this term, we have

R\ oA
P VM~ Soa
T (2L min (mq,msg) ,2 %)

% I <2L min (ml, m2)) ’ (23)

L47L min(mi,m2)

Now, using the series representation of the lower incomplete
gamma function [70, eq. (6.5.12)] in (23), we get

2L min(m1,m2)
9 Y
p

k
= 1 Yy
-2
x’;k!(2Lmin(m1,m2)+k) ( p >

PR+\54 N 6OOZL272L min(my,ms)

ot T T (2L min (my, ma))

(24)

Since the first term in (24) becomes the most representative
as p approaches infinity, we can finally obtain an asymptotic
closed-form OP expression as

PEN ~ (pC) P, (25)

where D}, = L min (mq,m2) is the OP diversity gain and
1 doa™ =
= oo (26)
Yy [I' (2L min (my, ms2) + 1)

is the OP coding gain.



2) Case II: From (17), an exact OP expression can be easily
obtained as

Lmf —i—2L min(mq,msz)
P = F z+2Lmin(m1,m2))

T <i+2Lmin (m17m2),2,/¢2‘h> )

To obtain an asymptotic expression for the OP, we employ
the same procedure as in (25). That is, we focus on the
first term of the series in (27) and subsequently apply the
series representation of the lower incomplete gamma function.
Ultimately, the asymptotic closed-form OP expression is given
by

_pt
.Sﬁ out
Pouy =~ (p Cout) ,

where D}, = L min (my, ms) is the OP diversity gain and

1 { poB*
Y | I (2L min (mq, mg) + 1)

is the OP coding gain.

(28)

el = ] P (29)

B. Average Bit-Error Rate
Across various modulation formats, the ABER is given by

1> )
RO} /0 T (b,dph?) fu(h)dh

where b and d are modulation-dependent parameters. For
instance, b = 0.5 and d = 1 signify coherent binary phase-shift
keying (BPSK) modulation; b = 0.5 and d = 0.5, coherent
binary frequency shift keying (BFSK) modulation; and b = 1
and d = 1, differential BPSK modulation.

1) Case I: An exact expression for the ABER can be
obtained by plugging (7) into (30), yielding

Z 5 21 (\/QZ)Zme(ml,mz)+
2I‘ T (i + 2L min (m1,ms))

B, = (30)

PR

Zi(p), (1)

where

e ‘ .
Il(p) :/ exp (_Qﬂh) hz+2L min(mq,m2)—1
0

x I (b, dph?) dh. (32)

Due to the presence of the upper incomplete gamma func-
tion in the integrand, (32) cannot be evaluated in closed form.
Therefore, we apply a residue-based approach.

Replacing the upper incomplete gamma function by its
contour integral representation [73, eq. (06.06.07.0005.01)] in
(32), we have

00 4 .
Ii(p) :/ exp (—2@]1) hz+2me(m1,m2)_1
0

1 . F(S)F(bJrf) (dph2)_£

E+1)
where ¢ is a complex variable of integration and Lc, is

a complex path parallel to the imaginary axis, starting at
(max (—b,0) — coi) and ending at (max (—b,0) + coi).

d¢dh
2mi ﬁcl 5 ’

(33)

Interchanging the order of integration in (33) by invoking
Fubini’s theorem then evaluating the inner integral,® we obtain

Zi(p) =

(2y/3p) T REminmme) 7{ ()T (b+C)

. . dp\
xT' (i + 2L min (my,ms) — 2¢) () d¢, (34)

4

where ¢ is a new complex variable of integration and Lc, is
a new complex path that appears since the integration over
z deformed the previous integration path. Specifically, we
choose L, to be a contour that separates the poles of I"(¢)
and T'(b+ (¢) from those of I' (¢ + 2L min (mq,msg) — 2¢)
in a counterclockwise sense. We adopt this contour as it
prevents Z; (p) from having replicated poles and ensures the
convergence of the complex integral.

At this point, the contour integral in (34) can be evaluated
via residues as [76]

0= (24F)
X]EOR{ :1

—i—2L min(mi,m32)

(z + 7 4 2L min (mq, ms))| ,
(35)

where R [-] denotes the residue of the function Z (¢) evaluated
at the poles ¢ = (i + j + 2L min (my, m2)), and

(©)
D(OT(b+ T (i — 2¢ + 2L min (my,ma)) (dp\ ™
T(C+1) m

(1]

(36)

is the integration kernel of (34).
After computing the residues in (35), we get

- (2@

) —4—2L min(mi,m2)

iT (% (2b+ i+ j + 2L min (m1,m2)))

— (1)
j; (i + j + 2L min (my,m2)) T(j + 1)

i+j+2L min(my,m2)
X (2 z/}) .
\ dp

Replacing (37) into (31), we obtain

(37

Lo—2L min(mq,mz)—1
]RJr\gg a2
P _
b S s

y r(i (2b+i+j+2Lmln(m1,m2)))
I (i + 2L min (mq, ms)) (i + j + 2L min (mq, m2))

2L min(m1,mz2)+i+j
X <2 d}) .
dp

SFrom here on, all changes in the order of integration are performed
ensuring Fubini’s conditions [75].

(38)



Finally, with the aid of [73, eq. (07.25.02.0001.01)] and after
lengthy algebraic manipulations, an exact ABER expression is
obtained as

al9o—2L min(mq,m2)—1

R\t
L )
( \/7)2Lmin(m1,m2)+i
8 Z I' (i + 2L min (mq,ma)) [©1,i (p) — ©2,i (p)],
(39
where
O1.(p) = F(b+ % +Lmin(m17m2))
Lilp) = (2L min (mq, ma) +19)
X 2 Fy (Lmin (m1,ma2) + %,Lmin (my, ms)
2 9’ mln(ml’m2) + 9 + dp (40)
2/ (b+ § + Lmin (my, ma) + })
62 (p) =

(2L min (my, ma) + i+ 1)

) 1
X o Fy (Lmin (mqy,ma) + % + §7Lmin (mq1,m2)

2723 2" dp
41)

i 13 i3
+b++,Lmin(m17mz)+2+-w>.

On the other hand, the asymptotic ABER, can be readily
obtained from (38) by taking the first (dominating) terms of
both series, resulting in

FEN o~ (pep) 7Pt “2)

where D} = Lmin (m,mg) is the ABER diversity gain and
or _ 4 [ 800 T (b+ Lmin (my, my)) ~7f )
b7 4 [ 2T(6)T (2L min (my,ms) + 1)

the ABER coding gain.

2) Case II: A closed-form ABER expression can be ob-
taining by substituting (16) into (30), that is,

ﬁL Lmf 05
2I°(b) ; T (i + 2L min (my, ma))

R =

Zi(p), (44

where Z;(p) is given by (37).
Thus, upon replacing (37) into (44), we have

Lm' oo

. 2\/—) 2L min(mq,mo)—i
(i + 2L min (mq, m2))

i=0 j=0
(5 (2b+ i+ j + 2L min (my, my)))
(i 4+ j 4+ 2L min (mq, m2))

2L min(mq,mz)+i+j
X (2 1Z1> :
dp

(45)

— Analytical, eq. (7)

* Simulated
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Fig. 2. PDF of H assuming mj = 1.8, me = 0.7, Q1 = 1, Q2 = 1, and
several values of L.

After several algebraic manipulations, an exact ABER ex-
pression can be finally obtained as

BL
yei
By 2F(b)

\/—) 2L min(my,ma)—1
X Z T

(¢ + 2L min (mq,ms2))

[©1,i (p) — O2,: ()],

(46)
where O1;(p) and O, (p) are given in (40) and (41),

respectively.

An asymptotic closed-form ABER expressions can be
promptly derived by using only the first (dominating) terms
of the series in (45), yielding

re = (oe)) . )

where DZ = Lmin (my,m2) is the ABER diversity gain and
_1
ci—d 0BT (b+ I_fmln (m1,mz2)) | =] 48)
2T(b)T (2L min (my, mg) + 1)

the ABER coding gain.

Notice that all diversity gains (D, D(T)m, Dy, and DZ) are
equal to L min (my,ms). Intuitively, this implies that the RIS-
OPS enhances the system performance by choosing the most
severe fading shape parameter between the two channels (S-
RIS or RIS-D).

It is noteworthy to highlight that (22), (27), (39), and (46)
are also original contributions of this work.

V. NUMERICAL RESULTS

Next, we corroborate the accuracy and efficiency of our an-
alytical findings via Monte Carlo and numerical simulations.
The efficiency analysis is exclusively conducted for the PDF
and CDF expressions outlined in Theorem 1 as they are not
given in closed form.

6 All simulations were conducted using MATHEMATICA software running
on a standard laptop computer featuring a 12-core CPU comprising 6
performance cores and 6 efficiency cores, and unified memory of 18 GB.
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Fig. 3. PDF of H assuming L = 30, 21 = 1, Q22 = 1, and several values
of m1 and mo.

Figs. 2-5 illustrate the PDF of H computed through (7)
and (16). In particular, Figs. 2 and 4 show the PDF of H
for several values of L. Meanwhile Figs. 3 and 5 depict the
PDF of H for different values of m; and ms. The distribution
parameters have been chosen to illustrate the wide range of
shapes that the PDFs can exhibit. To plot Figs. 2 and 3, we
utilized fewer than 200 terms in (7) and no more than 20
terms in (11). Notice the perfect agreement between the PDF
curves and Monte Carlo simulations, thus corroborating our
analytical findings.

Figs. 6 and 7 depict the exact and asymptotic OP ex-
pressions versus the average SNR per symbol for Case I
and Case II, respectively, considering several values of L.
Likewise, Figs. 8 and 9 show the exact and asymptotic ABER
expressions versus the average SNR per symbol for Case
I and Case II, respectively, considering different values of
L. Observe in all the figures how the system performance
improves as L increases, displaying lower OP and ABER
values for a given average SNR per symbol. That is in
agreement with our analytical findings since the OP and
ABER diversity gains of both cases are proportional to L.
Notice how our exact analytical curves perfectly coincide with
the numerical simulations, offering robust validation for our
results. Additionally, observe how our asymptotic formulations
effectively describe the system behavior in the high SNR
regime.

Figs. 10 and 11 respectively illustrate the elapsed times
required by (7) and (8) to compute the PDF and the CDF of H
versus the number of RIS elements L. Additionally, Figs. 10
and 11 consider the computation times required by the expres-
sions outlined in [61] and [63]. As no PDF expressions were
provided in [61] nor in [63], we calculate them using their
corresponding CDFs. For the analysis, we consider an arbitrary
single point i = 10, a target relative error of 1071°, and four
distinct parameter configurations. The integral expressions in
[61] and [63] were evaluated using MATHEMATICA’s numer-
ical integration method “GlobalAdaptive”—which proved
faster than the other available integration methods—with a

— Analytical, eq. (16)

* Simulated
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Fig. 4. PDF of H assuming m; = 5, mg = 0.5, Q1 = 1, Q9 = 1, and
several values of L.
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Fig. 5. PDF of H assuming L = 30, 21 = 1, Q22 = 1, and several values
of m1 and mo.

“WorkingPrecision” set to 100.” Notice in both figures
that the elapsed times of the solutions in [63] significantly
escalates with the increase in the number of RIS elements,
evidencing computation times of above 10 seconds for L = 3,
100 seconds for L = 6, and surpassing 500 seconds for L = 9.
The computation times of the solutions in [63] for L > 12
were not displayed because the numerical integration exhibited
convergence instability issues or did not reach the target
accuracy. Conversely, observe that the computation times of
our solutions ((7) and (8)) as well as the ones given in [61]
exhibit significant time reductions, showing elapsed times of
less than 8 seconds for 3 < L < 30. Also, notice that, although
marginal, there is a gradual increase in computation time as L
rises. Nonetheless, it can be easily infer that our expressions
consistently offer the faster solution for any L.

Figs. 12 and 13 respectively show the relative errors of
(7) and (8) versus their associated computation times. Figs.
12 and 13 also display the relative errors computed when
using the solutions in [61]. Owing to instability concerns for
L > 10 and the prolonged computation times involved (> 10
seconds), we refrain from conducting an accuracy analysis

TFor low-dimensional integrals (our case), the accuracy goal is related
to the “WorkingPrecision” parameter. In other words, the higher the
“WorkingPrecision” parameter, the better the accuracy.



1 S
Analytical, eq. (22) PR Analytical, eq. (39)
10" RSETEEE Analytical, eq. (25) 10~ SR y N - Analytical, eq. (42)
Simulated %  Simulated
2 -2
10 O L=5,10,15,20,25,30 10 . L=5,10,15,20,25,30
& X & ~
ﬁgmé 1073 %o 10 8
1074F 1074
107 : 107
105 ; i ‘ 107 ‘ ‘
-30 -20 -10 0 10 -25 -20 -15 -10 -5 0 5 10
p [dB] p[dB]
Fig. 6. OP (Case I) versus the average SNR per symbol, assuming m1 = 1.8,
mg = 0.7, Q1 =1, Q2 = 1, 4, = 0 [dB], and several values of L.

Fig. 8. ABER (Case I) versus the average SNR per symbol, assuming mi =
4.7, mg =1.1,Q1 =1,Q2 =1,b=0.5,d =1, and several values of L.
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5, Fig. 9. ABER (Case II) versus the average SNR per symbol, assuming mi =
3, ma =250 =10 =1,b=0.5,d =1, and several values of L.

for the formulations in [63]. In the figures, we consider an

arbitrary single point h = 10, my

3.2, ma 1.7

the relative errors in Figs. 12 and 13, we proceed as follows.
When employing (7) and (8), we initially set the number
of terms in (11) to 20, and subsequently start varying the
number of terms in (7) and (8) from 20 to 350. Finally,
for each iteration in the number of terms, we proceed to
calculate the computation time and the corresponding relative
error. On the other hand, when computing the expressions in
[61], we vary the maximum total number of sample points
used for the integration routine, “MaxPoints”, from 10 up
to 400.® Upon reaching the maximum number of evaluation
points, the integration routine terminates. After the routine
completion, we proceed to calculate the computation time and
the associated relative error. Notice in both figures that the
relative errors computed through [61] reach—due to machine
precision—a lower limit independently of the computation
time, where the solutions yield relative errors no less than
10~2%. In contrast, notice the fast convergence of (7) and (8)
towards the ground truth, exhibiting a lower relative error for a
given computation time. Furthermore, observe how the relative

8The parameter “MaxPoints” sets the maximum number of evaluation
points used in the numerical integration [73].

errors of (7) and (8) dramatically decrease as the computation
Q7 = 0.5, Q9 = 1.5, and different values of L. To calculate

time increases. For instance, for computation times between 2

and 4 seconds, (7) and (8) furnish outstanding relative errors,
falling below 1073°,

VI. CONCLUSIONS

This paper proposes new exact and tractable expressions for
the channel statistics of a RIS-aided wireless communication
system subject to Nakagami-m fading channels. The obtained
PDF and CDF expressions represent the most efficient solu-
tions reported in the technical literature to date. These expres-
sions outperform the competing exact solutions in terms of

accuracy, mathematical tractability, and computation time. We

also carried out a performance assessment analysis, obtaining
exact and asymptotic expressions for the OP and the ABER.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we begin by employing the series

representation of the modified Bessel function of the second
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kind and vth order [77, eq. (6)]:

K, (w) = exp(~w) w

I -v)
S s N
x;;(l—1>l'1“(y+u+ )(_Qw)’ “49)

where v € RT \ o.
Thereupon, from (49), we can rewrite (6) as
Vrdmmatmatlyma (2 (my —mg)) by !
F (ml) F (m2) F (—m1 =+ mo =+ %)

X exp( 2[11@) ;)ZO (H—J - 1)
(~avone)’

L(i+j—mi+mo+3)
G (i +j+mi—ma+ 3)

Noticing that we can equivalently define H, as the product
of two Nakagami-m RVs with swapped PDF parameters
(e, H = h17(h2,[ with th ~ NK(mQ,Qg) and hg,g ~
NK(m1,91)), and taking into account that the modified
Bessel function of the second kind is an even function with

fH, (h@) =

(50)
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Fig. 12. Relative error versus the required computation time to calculate the
PDF of H. The figure considers |m1 — ma| € RT \ o, an arbitrary single
point A = 10, m; = 3.2, mg = 1.7, 2; = 0.5, Q2 = 1.5, and different
values of L.
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CDF of H. The figure considers |mi — m2| € RT \ o, an arbitrary single
point A = 10, m1 = 3.2, mg = 1.7, Q1 = 0.5, Qo = 1.5, and different
values of L.

respect to its parameter (ie., K,(w) = K_
express (50) as

»(w)), we can

Fuu () = f41 ‘m1*m2‘1—‘(2 |my — m2‘)wm1n(m1,m2)
e L (m1) T (ma) T (§ = i —mo)

X h? min(myma) =1 o (—Qﬂhg)
iz’:<i+j1> T (i+j—|mi—ma|+3)
=07

—\ J—1 )T (i+j+[m1—ma| +3})

j

X (74\/1;}12) )
provided |m; — mo| € RT \ o.

Manipulating the summation indices in (51) along with
some minor simplifications, we get

61V

ng (hl) —u h? min(mhmz)—lwmin(ml,mz) exp (_2hl \/,J)

SNACAR
=0

(52)



where
-1 —|my —ma| + 3
Z' i—1 ]+\m1 ma|+ 3)
By the alternating series test [76] and since fr,(he) < oo,

we have lim |6;| = 0.
—00
Now, we proceed to take the Laplace transform of (52), i.e.,

L} (s) = / " exp (—she) far, (he) dhy, (54)

in which s € C and the integral converges provided Re [s] > 0.
Plugging (52) into (54) and then solving the resulting
integral, we obtain

L {fu,} (5) =apminimim2)

) i ) (S . Qﬂ) —i—2min(my,ms)
i=0
X (74\/12)1. I'(

The proof of convergence of (55) is relegated to Appendix B.
As the sum in (4) is composed of i.i.d. double-Nakagami-m
% then the Laplace transform of the PDF of H is given

(55)

i+ 2min (mq,ms)) .

by
L{Su}(s) = (L {fu} ()"
Substituting (55) into (56), we get

£} () =ty (s +2v%)

29 <S+2\/>) (—2)" F(i+2min(m1,m2))]
(57)

(56)

—2L min(m1,m2)

Now, we aim at obtaining an equivalent single-series repre-
sentation for (57). Thus, we employ a procedure akin to that
outlined in [78]. In order to do so, we utilize the following
differential equation:

9 (0" =1L

9L’ (58)

in which the prime symbol (') 51gn1ﬁes differentiation with

respect to ((s + 2/1) /2f)
9 = Ze (S“LQI) (=2)"T (i + 2 min (m1, ms))

(59)
Ee(526)

Notice that (59) is the series inside the square brackets in (57).

After solving (58) through recursive steps and subsequently
performing certain algebraic simplifications, it can be deduced
that the coefficients §; required in (60) can ultimately be
written as in (10).

(60)

9A double-Nakagami-m distribution is formed by the product of two
independent and not identically distributed Nakagami-m RVs [49].

Utilizing (60) in (57), we obtain
U} () =l gt mnim (s - 2@)

Notice in (56) and (57) that in order to compute & {frr} (s),
we raised a convergent series to the power of L. Therefore,
the resulting series in (61) is also convergent, implying that

—2L min(mq,mz2)

(61)

lim |§;| = 0. (62)
71— 00

Now, we employ the Fourier-Mellin integral to perform the
Laplace inversion [79]:
1
fu(h) = 2—% exp(sh)% {fm} (s)ds (63)
T1 Ly

where Lg denotes the Bromwich contour.
Replacing (61) into (63), we obtain

ﬁ exp(sh)
306 (2v5) (s+2v8) T g
1=0

(64)

ol ¢L min(my,ms)

fu(h) =

271

Finally, after performing a term-by-term inversion with the
assistance of [70, eq. (29.3.10)], the PDF of H can be derived
as in (7).

The CDF of H can be promptly obtalned after integrating

(7) from zero to h, ie., Fg(h fo fu(u)du, yielding (8).
This completes the proof.
APPENDIX B

CONVERGENCE OF (55)

In the pursuit of establishing the convergence of (55), our
initial step involves deriving the raw moments of H,, defined
as

M, A E[H]) = / 17 f11, (he)dhe, (65)
0

where n € N. As the raw moments of i, and hg ¢ exist, it
implies that the raw moments of Hy also exist (i.e., M,, < 00).

Replacing (52) into (65) and then evaluating the resulting
integral with the assistance of [73, eq. (06.05.02.0001.01)], we
obtain

M, =a pmin(mims) (2\/7})
X Z 0:(

Applying alternating series test [76] in (66), it follows that

—2min(my,mz)—n

T(i+n+2min(my,ms)). (66)

lim |6;] = 0. (67)
1—00



Furthermore, it implies that |6;| must eventually decay faster
than [2T (i +n + 2min (my,ms))] ', namely, there exists
an 79 € N such that

sup; {16/ 2'T (i + n+ 2min (my,m2))} =1, i > 7.

(68)

In order for the Laplace transform of fz,(h/) to converge,
it is necessary that [79]:

£ {1} (s)] < o0

Using (55) as well as the triangle inequality, |£ {fm,} (s)]
can be bounded as

2 (i b 0)] < g (44 20/)

x Z 16;| <S +\2ff> 9iT (i + 2 min (my, ms)) .

(69)

—2min(mq,m2)

(70)
Applying (68) in (70), we have

1 (i} ()] <) (54 2,/5)

[e%e] s —1
X — + 1) .
> (7
Taking into account that (s/2y/¢) + 1 > 1 for Re[s] > 0,
the series in (71) can be evaluated in closed form, yielding

| {1, } (5)]

< wmin(ml,mg)s—l

—2min(my,m2)

(71)

) 1—2min(mq,m2)

<s+2\/E

Thus, as the upper bound in (72) exists, the convergence of
(55) is ensured. This completes the proof.

. (72)

APPENDIX C
ABSOLUTE AND UNIFORM CONVERGENCE OF (7)

Define #(h) as a function with a similar analytical structure
to (7), but it takes the absolute value of the summands, namely

H(h) 2o h ! exp (—2hﬂ)

27451 (h\/@) 2L min(ml,mg)Jri
[ (i + 2L min (mq,m3))

o0

R

7=

(73)

Thus, if (73) converges, then (7) converges absolutely [76].
Applying the absolute value operator in (73), we have

H(h) =alh texp (—2/1@)

% gi |5Z| (h\/w)QLmin(ml,mz)-‘r’i
T (i + 2L min (mq,ms))

(74)
=0

Using (62), we can define §* £ max; {|6;|}. Accordingly,
we are now able to establish an upper bound for H(h) as

H(h) <a®h™16* exp (—th)

. i (h\/—)2L min(mi,m2)+i
= I'(i + 2L min (m1,mz))

(75)

By applying [70, eq. (6.5.12)], we can obtain a closed-form

expression for the bound in (75), given by
H(h) < wOéL 5*21—2Lmin(m1,m2)
T (2L min (my, me) — 1, Zhﬂ)
(2L min (my,m2) —1)

Therefore, given the existence of an upper bound for H(h), it
follows that (73) convergres and (7) converges absolutely.

After employing T ) <1 for h > 0 in (76), we can
still establish an upper r bound for H(h) as

'H(h)<§*\/1204L2172Lmin(m1’m2), (77)

Notice in (77) that it exits an upper bound for H(h) is
independent of h. Therefore, by the Weierstrass M-test [80],
we conclude that (7) converges uniformly and absolutely on
h. This completes the proof.

(76)

APPENDIX D
TRUNCATION ERROR BOUND FOR (12)
Similar to Appendix D, we leverage the existence of 75 € N
such that sup, |d;| = 1 holds for every ¢ greater than 5. Hence,
the truncation error in (13) can be bounded as

1 (B) <0‘L o (~2h/Y)

(h\/>)2Lm1n(m1 ,m2)+i
< T (i + 2L min (ma, ma)) '

(78)

By direct applicatlon of [70, eq. (6.5.12)], an upper bound
for €4, (h) can be obtained in closed form as in (14), thereby
finalizing the proof.

APPENDIX E
TRUNCATION ERROR BOUND FOR (13)
Similar to Appendix D, we leverage the existence of r5 € N

such that sup, |J;| = 1 holds for every ¢ greater than r;. Hence,
the truncation error in (13) can be bounded as

€Fy (h) < aL4—L min(mi,mz2)
i T (2L min (my,mg) + i, 2h\/1)
X

I’ (2L min (mq,mg) + )

i=t
Applying the upper bound for the lower incomplete gamma
given in [81, Theorem 4.1], we have

(79)

. 2L min(my,ms2)
€Fy (h) < aL4—Lm1n(m1,m2) (th) 1,Mm2

y Z ((2L min ( ml,mg) + i) exp (—2h\/P) + 1)

i+ 2L min (my, mg) + 2)
X (Zhﬂ)

< alg—Lmin(mi,ms) (Qhﬂ

o0

" Z ((2L min (mq, ma) +

I (i + 2L min (mq, m2)

)QL min(my,ms)

5 (n)

i=t

(80)

Ultimately, the infinite summation in (80) can be evaluated

in close form with the aid of [70, eq. (6.5.12)], yielding (15),
thus completing the proof.



APPENDIX F
PROOF OF THEOREM 2

We commence by utilizing the finite sum representation of
the modified Bessel function of the second kind and vth order
[73, eq. (03.04.03.0004.01)]:

Livl-3] ; 1
[ 7 (i +1vl=3)! i
K, (w)=4/— - 2w) ™",
(w) 2w exp( w) ; il (—i n |I/‘ — %)'( w)
(81)
which is valid for v € Z + 1.
By employing (81) and the relationship K, (w) = K_,(w),

we can express (6) as

mitma—3 , mi+ma—3
BT )

T ) = R G o)
&L (4y/Bhe) 7 (lma = ma| +5 = 3)!
B ] o I

provided [my — ma| € N — 1.

Changing the index of summation i — (m! — j) and using
the fact that (— |a— 3| —3)! = T'([3 —a] +3), we can
rewrite (82) as

1 3
Qﬁﬂ'rn1+m2—§h2n1+m2—§
T () T (ma) exp (~2v/uhe)
B Pt
T (—i+mt+ )T (m +i+ |m1—ma| +3)
(83)

TH, (h5> =

Applying the Laplace transform to (83), we get

Zﬁﬂmﬁrmfz*%
[ (m1) ' (mo)

Xi:cbi (s+2ﬂ)

L{fu}(s) =

—i—m¥—m, —mg—&-%

X (4ﬂ)i_m I‘(mi—i—i—i-ml +m2—%
(84)
where
b= [ (=i + |m1 —ma| +m' + 3) . @5)
T (=i+mt+ )T (mE+i+ g — ma| + 1)

The Laplace transform of the PDF of X is obtaining by
substituting (84) into (56), yielding

L{fu}(s) = B~ ¢ (s i Qﬂ)L(—mi—ml—mﬁ%)
X {idh’ <s+2\/1$)7i (4\/15)2

L
1
xf(mi+i+m1+m2—2>} . (86)

Exploiting the fact that m*+m1+mo—1 = 2min (my, ms)
holds when |m; — ma| € N — %, we can rewrite (86) as

—2L min(mq,m2)

LA fut(s) = B8 0 (s+2v/2)
S0 (s+2v0) " (wv3)

L

x T (2min (mq, ms) Jrz)] . (87)

Notice that (57) and (87) have a similar analytical structure.

Hence, we can apply the same rationale to obtain an equivalent

sum representation for (86). Thus, we consider the following
differential equation:

¢ (") = L™, (88)

where, as in (58), the prime symbol (') signifies differentiation

with respect to (s + 24/4) . Moreover,

TYL

=S (s208) " (W) T

(2min (my,ms) +19)

(89)
Lmf i
F =Y (s - 2\/@ (90)
=0

Notice that (89) is the finite sum inside the square brackets in
(86). Furthermore, notice that unlike (60), we choose (90) to
be a finite sum with limit of summation equal to Lm/. That is
because when we raise a polynomial of degree m to the Lth
power [refer to (86)], the maximum exponent of the resulting
polynomial is Lm/.

By solving the differential equation (88) through recursive
steps and followed by some algebraic manipulations, it follows
that the coefficients ¢; needed in (90) can be computed as in
(19).

Employing (90) in (86), we obtain

=p* (s + 2\/1Z)
Lmt

xchz(s+2f>

1=0

—2L min(m1,m2)

L{fu}(s)

oD

The PDF of H can be obtained replacing (91) into (63),
namely,

L
zﬂ—j{ exp(sh)
271 LB
i—2L min(my,m2)

xz%(s—i—Qf) “ds.

fu(h)

92)

After a term-by-term inversion with the aid of [70, eq.
(29.3.10)], the PDF of H can be derived as in (16), whereas
the CDF of H can be obtained after integrating (16) from zero
to h, yielding (17). This completes the proof.
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